Pig Latin Basics

Table of contents

O] 01Y7 (0] SO PPR 2
2 RESEIVEA KEYWOITS......cc.eeieeeieeie et eie st e e e ee st te e te e sreesseeaesaaesaeeneesreenseenseeneensens 2
3 CASE SENSITIVITY ..cueiueiieieie ettt b bbbt bt st et e e e et nne e 3
4 Data TYPES AN IMIOTE.......oouiiieieieete sttt sttt e et n e b e snesneese e e 4
5 Arithmetic Operators and MOTE.........cociiieieeiieie et 27
6 REIGONAl OPEIALONS.......eeeiie ittt et e e e b e ss e et e e nbeeenneennes 46

O LB L v (< 1< £ 88

1 Conventions

Pig Latin Basics

Conventions for the syntax and code examples in the Pig Latin Reference Manual are

described here.

Convention Description

O Parentheses enclose one or more
items.

Parentheses are also used to
indicate the tuple data type.

[Straight brackets enclose one or
more optional items.

Straight brackets are also used to
indicate the map data type. In this
case <> is used to indicate optional
items.

Curly brackets enclose two or
more items, one of whichis
required.

Curly brackets also used to
indicate the bag data type. In
this case <> isused to indicate
required items.

{}

Horizontal ellipsis pointsindicate
that you can repeat a portion of the
code.

UPPERCASE In general, uppercase type

indicates elements the system

lowercase supplies.

In general, lowercase type
indicates elements that you supply.

(These conventions are not strictly
adherered to in all examples.)

See Case Sensitivity
2 Reserved Keywords

Pig reserved keywords are listed here.

-A

Example

Multiple items:
(1, abc, (2,4,6))

Optional items:
[INNER | OUTER]

Two items, one required:
{ block | nested_block }

Pig Latin syntax statement:
cat path [path ...]

Pig Latin statement:
a=LOAD 'data AS (fL:int);
e LOAD, AS- Pig keywords

a, f1 - aliases you supply
'data - data source you supply

assert, and, any, all, arrange, as, asc, AVG

Page 2

Pig Latin Basics

-B bag, BinStorage, by, bytearray, BIGINTEGER,
BIGDECIMAL

-C cache, CASE, cat, cd, chararray, cogroup, CONCAT,
copyFromLocal, copyToLocal, COUNT, cp, cross

-D datetime, %declare, %default, define, dense, desc,
describe, DIFF, distinct, double, du, dump

-E e E, eval, exec, explain

-F f, F, filter, flatten, float, foreach, full

-G generate, group

-H help

-1 if, illustrate, import, inner, input, int, into, is

-J join

-K kill

-L [, L, left, limit, load, long, Is

- M map, matches, MAX, MIN, mkdir, mv

-N not, null

-0 onschema, or, order, outer, output

-P paralel, pig, Pigbump, PigStorage, pwd

-Q quit

-R register, returns, right, rm, rmf, rollup, run

-S sample, set, ship, SIZE, split, stderr, stdin, stdout,
store, stream, SUM

-T TextLoader, TOKENIZE, through, tuple

-U union, using

-V, W, X,Y,Z void

3 Case Sensitivity

The names (aliases) of relations and fields are case sensitive. The names of Pig Latin
functions are case sensitive. The names of parameters (see Parameter Substitution) and all
other Pig Latin keywords (see Reserved Keywords) are case insensitive.

Page 3

cont.html#Parameter-Sub

Pig Latin Basics

In the example below, note the following:

* Thenames (aliases) of relations A, B, and C are case sensitive.

* Thenames (aliases) of fieldsf1, f2, and f3 are case sensitive.

* Function names PigStorage and COUNT are case sensitive.

* KeywordsLOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, and DUMP are
case insensitive. They can aso be written asload, using, as, group, by, etc.

In the FOREACH statement, the field in relation B is referred to by positional notation
($0).

4 Data Types and More

4.1 |dentifiers

Identifiers include the names of relations (aliases), fields, variables, and so on. In Pig,
identifiers start with aletter and can be followed by any number of letters, digits, or
underscores.

Valid identifiers:

Invalid identifiers:

4.2 Relations, Bags, Tuples, Fields

Pig Latin statements work with relations. A relation can be defined as follows:

» A relationisabag (more specifically, an outer bag).
* A bagisacollection of tuples.

» Atupleisan ordered set of fields.

» Afieldisapiece of data

start.html#pl-statements

Pig Latin Basics

A Pig relation isabag of tuples. A Pig relation issimilar to atable in arelational database,
where the tuples in the bag correspond to the rows in atable. Unlike arelational table,
however, Pig relations don't require that every tuple contain the same number of fields or that
the fields in the same position (column) have the same type.

Also note that relations are unordered which means there is no guarantee that tuples are
processed in any particular order. Furthermore, processing may be parallelized in which case
tuples are not processed according to any total ordering.

4.2.1 Referencing Relations

Relations are referred to by name (or alias). Names are assigned by you as part of the Pig
Latin statement. In this example the name (alias) of therelationisA.

A = LOAD 'student' USING PigStorage() AS (nane:chararray, age:int, gpa:float);
DUWP A;

(John, 18, 4. OF)

(Mary, 19, 3. 8F)

(Bill, 20, 3.9F)

(Joe, 18, 3. 8F)

You an assign an aias to another alias. The new alias can be used in the place of the original
aliasto refer the original relation.

LOAD ' student' USING Pi gStorage() AS (nane:chararray, age:int, gpa:float);
A
DUMVP B;

A
B

4.2.2 Referencing Fields

Fields arereferred to by positional notation or by name (aias).

» Positional notation is generated by the system. Positional notation is indicated with the
dollar sign ($) and begins with zero (0); for example, $0, $1, $2.

* Names are assigned by you using schemas (or, in the case of the GROUP operator and
some functions, by the system). Y ou can use any name that is not a Pig keyword (see
|dentifiers for valid name examples).

Given relation A above, the three fields are separated out in this table.

First Field Second Field Third Field
Datatype chararray int float
Positional notation $0 $1 $2

(generated by system)

Page 5

Pig Latin Basics

Possible name (assigned name age gpa
by you using a schema)

Field value (for thefirst | John 18 4.0
tuple)

As shown in this example when you assign names to fields (using the AS schema clause) you
can still refer to the fields using positional notation. However, for debugging purposes and
ease of comprehension, it is better to use field names.

In this example an error is generated because the requested column ($3) is outside of the
declared schema (positional notation begins with $0). Note that the error is caught before the
statements are executed.

4.2.3 Referencing Fields that are Complex Data Types

As noted, the fields in atuple can be any data type, including the complex data types: bags,
tuples, and maps.

Use the schemas for complex data types to name fields that are complex data types.
» Usethe dereference operators to reference and work with fields that are complex data

types.

In this example the data file contains tuples. A schemafor complex data types (in this case,
tuples) is used to load the data. Then, dereference operators (the dot in t1.tlaand t2.$0) are
used to access the fields in the tuples. Note that when you assign names to fields you can till
refer to these fields using positional notation.

Pig Latin Basics

4.3 Data Types

4.3.1 Simple and Complex

Simple Types Description Example

int Signed 32-bit integer 10

long Signed 64-bit integer Dataz 10L or 10l
Display: 10L

float 32-hit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data 10.5or 10.5e2 or 10.5E2
Display: 10.5 or 1050.0

chararray Character array (string) in Unicode = hello world

UTF-8 format
bytearray Byte array (blob)
boolean boolean true/false (case insensitive)
datetime datetime 1970-01-01T00:00:00.000+00:00
biginteger Java Biglnteger 200000000000
bigdecimal Java BigDecimal 33.456783321323441233442
Complex Types
tuple An ordered set of fields. (19,2

Page 7

Pig Latin Basics

bag

An collection of tuples.

{(19,2), (18,1)}

map

A set of key value pairs.

[openttapache]

Note the following general observations about data types:

Use schemasto assign typesto fields. If you don't assign types, fields default to type
bytearray and implicit conversions are applied to the data depending on the context in
which that datais used. For example, in relation B, f1 is converted to integer because 5is
integer. In relation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

If aschemais defined as part of aload statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

If Pig cannot resolve incompatible types through implicit casts, an error will occur.
For example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

All data types have corresponding schemas.

4.3.2 Tuple

A tupleisan ordered set of fields.

Pig Latin Basics

4.3.2.1 Syntax

(field [, field ...])

4.3.2.2 Terms
() A tupleisenclosed in parentheses ().
field A piece of data. A field can be any datatype
(including tuple and bag).
4.3.2.3 Usage

Y ou can think of atuple as arow with one or more fields, where each field can be any
data type and any field may or may not have data. If afield has no data, then the following
happens:

* Inaload statement, the loader will inject null into the tuple. The actual value that is
substituted for null isloader specific; for example, PigStorage substitutes an empty field
for null.

* Inanon-load statement, if arequested field is missing from atuple, Pig will inject null.

Also see tuple schemas.

4.3.2.4 Example
In this example the tuple contains three fields.

(John, 18, 4. OF)

4.3.3 Bag

A bag isacollection of tuples.

4.3.3.1 Syntax: Inner bag

{ tuple[, tuple...]}

4.3.3.2 Terms
{1} Aninner bag isenclosed in curly brackets{ }.
tuple A tuple.

4.3.3.3 Usage

Note the following about bags:

Page 9

Pig Latin Basics

* A bag can have duplicate tuples.

* A bag can have tuples with differing numbers of fields. However, if Pig triesto accessa
field that does not exist, anull value is substituted.

A bag can have tuples with fields that have different data types. However, for Pig to
effectively process bags, the schemas of the tuples within those bags should be the same.
For example, if half of the tuplesinclude chararray fields and while the other half include
float fields, only half of the tuples will participate in any kind of computation because the
chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.
Also see bag schemas.

4.3.3.4 Example: Outer Bag

In this example A isarelation or bag of tuples. Y ou can think of this bag as an outer bag.

4.3.3.5 Example: Inner Bag

Now, suppose we group relation A by the first field to form relation X.

In thisexample X isarelation or bag of tuples. The tuplesin relation X have two fields. The
first field istype int. The second field is type bag; you can think of this bag as an inner bag.

4.3.4 Map

A map isaset of key/value pairs.
4.3.4.1 Syntax (<> denotes optional)

[key#value <, key#value ...>]

Page 10

Pig Latin Basics

4.3.4.2 Terms
[Maps are enclosed in straight brackets|].
Key value pairs are separated by the pound sign #.
key Must be chararray datatype. Must be a unique value.
value Any datatype (the defaults to bytearray).

4.3.4.3 Usage

Key values within arelation must be unique.
Also see map schemas.

4.3.4.4 Example
In this example the map includes two key value pairs.

[nane#John, phone#5551212]

4.4 Nulls and Pig Latin

In Pig Latin, nulls are implemented using the SQL definition of null as unknown or non-
existent. Nulls can occur naturally in data or can be the result of an operation.

4.4.1 Nulls, Operators, and Functions

Pig Latin operators and functions interact with nulls as shown in this table.

Operator Interaction

Comparison operators: If either subexpression isnull, the result is null.
==, I=

> <

>z, <=

Comparison operator: If either the string being matched against or the string
matches defining the match is null, the result isnull.
Arithmetic operators: If either subexpression isnull, the resulting

F oo x expression isnull.

% modulo

?: bincond

CASE : case

Page 11

Null operator:
isnull

Null operator:
isnot null

Dereference operators:
tuple (.) or map (#)

Operators:
COGROUP, GROUP, JOIN

Function:
COUNT_STAR

Cast operator

Functions:
AVG, MIN, MAX, SUM, COUNT

Function:
CONCAT

Function:
SIZE

Pig Latin Basics

If the tested value is null, returns true; otherwise,
returns false (see Null Operators).

If the tested value is not null, returns true; otherwise,
returns false (see Null Operators).

If the de-referenced tuple or map is null, returns null.
These operators handle nulls differently (see
examples below).

This function counts all values, including nulls.

Casting a null from one type to another type resultsin
anull.

These functions ignore nulls.

If either subexpression is null, the resulting
expression isnull.

If the tested object is null, returns null.

For Boolean subexpressions, note the results when nulls are used with these operators:

FILTER operator — If afilter expression resultsin null value, the filter does not pass them
through (if X isnull, !X isaso null, and the filter will reject both).

Bincond operator — If a Boolean subexpression resultsin null value, the resulting
expression is null (see the interactions above for Arithmetic operators)

4.4.2 Nulls and Constants

Nulls can be used as constant expressions in place of expressions of any type.

In this example aand null are projected.

A
B

LOAD 'data' AS (a, b,
FOREACH A GENERATE a,

In this example of an outer join, if the join key is missing from atableit is replaced by null.

A = LOAD ' student'

int, gpa: float);

Page 12

Pig Latin Basics

Like any other expression, null constants can be implicitly or explicitly cast.
In this example both aand null will be implicitly cast to double.

In thisexample both aand null will be cast to int, aimplicitly, and null explicitly.

4.4.3 Operations That Produce Nulls

As noted, nulls can be the result of an operation. These operations can produce null values:

Division by zero

Returns from user defined functions (UDFs)

Dereferencing afield that does not exist.

Dereferencing a key that does not exist in amap. For example, given amap, info,
containing [name#john, phone#5551212] if auser triesto use info#addressanull is
returned.

Accessing afield that does not exist in atuple.

4.4.3.1 Example: Accessing afield that does not exist in a tuple

In this example nulls are injected if fields do not have data.

Pig Latin Basics

4.4.4 Nulls and Load Functions

As noted, nulls can occur naturaly in the data. If nulls are part of the data, it isthe
responsibility of the load function to handle them correctly. Keep in mind that what is
considered a null value is loader-specific; however, the load function should aways
communicate null valuesto Pig by producing Javanulls.

The Pig Latin load functions (for example, PigStorage and TextL oader) produce null values
wherever datais missing. For example, empty strings (chararrays) are not loaded; instead,
they are replaced by nulls.

PigStorage is the default load function for the LOAD operator. In this example the is not null
operator is used to filter names with null values.

4.4.5 Nulls and GROUP/COGROUP Operators

When using the GROUP operator with asingle relation, records with anull group key are
grouped together.

When using the GROUP (COGROUP) operator with multiple relations, records with anull
group key from different relations are considered different and are grouped separately. In the
example below note that there are two tuples in the output corresponding to the null group
key: onethat contains tuples from relation A (but not relation B) and one that contains tuples
from relation B (but not relation A).

Pig Latin Basics

4.4.6 Nulls and JOIN Operator

The JOIN operator - when performing inner joins - adheres to the SQL standard and
disregards (filters out) null values. (See aso Drop Nulls Before a Join.)

4.4.7 Nulls and FLATTEN Operator

The FLATTEN operator handles null value differently based on its schema.

For null tuples, FLATTEN(null) produces multiples nulls based on the number of elements
in the schemafor that field. If tuple has no schema, FLATTEN(null) ssimply returnsasingle
null.

For null bags, we would have liked to discard the row just like we do with flatten of an empty
bag. However, it wastoo late by the time we noticed thisinconsistency. In order to preserve
the backward compatibility, FLATTEN(null) for bag produces multiples nulls based on

the number of elements defined for the schema of this bag. If no schema, asingle null is
returned.

For bags containing some null tuples, it follows the same rule as flatten of null tuples
described above.

For null maps, FLATTEN(null) produces 2 nulls to represent the key and the value.
For null with other types, FLATTEN(null) simply returns a single null.

4.5 Constants

Pig provides constant representations for all data types except bytearrays.

Constant Example Notes

Page 15

perf.html#nulls

Please note the following:

Simple Data Types
int

long

float

double

chararray

bytearray

boolean

biginteger
bigdecimal
Complex Data Types

tuple

bag

map

Pig Latin Basics

19
19L

19.2F or 1.92e2f

19.2 or 1.92e2

‘hello world'
Not applicable.

trueffalse Case insensitive.

19211921192119211921BI

192119211921.192119211921BD

(29,2,1) A constant in this form creates a
tuple.

{(19,2,(1,2)} A constant in this form creates a
bag.

['name’ # 'John’, "ext’ # 5555] A constant in this form creates a
map.

On UTF-8 systems you can specify string constants consisting of printable ASCI|
characters such as 'abc'; you can specify control characters such as'\t'; and, you can
specify a character in Unicode by starting it with \u', for instance, \uOOO1' represents
Ctrl-A in hexadecimal (see Wikipedia ASCII, Unicode, and UTF-8). In theory, you
should be able to specify non-UTF-8 constants on non-UTF-8 systems but as far aswe
know this has not been tested.

To specify along constant, | or L must be appended to the number (for example,
12345678L). If thel or L isnot specified, but the number istoo large to fit into an int, the
problem will be detected at parse time and the processing is terminated.

Any numeric constant with decimal point (for example, 1.5) and/or exponent (for
example, 5et+1l) istreated as double unless it ends with the following characters:

» forFinwhich caseitisassigned typefloat (for example, 1.5f)
» BD or bdinwhich caseit is assigned type BigDecimal (for example,
12345678.12345678BD)

Page 16

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

Pig Latin Basics

» Biglntegers can be specified by supplying Bl or bi at the end of the number (for example,
123456789123456BI)

» Thereisno native constant type for datetime field. Y ou can use a ToDate udf with
chararray constant as argument to generate a datetime value.

The data type definitions for tuples, bags, and maps apply to constants:

* A tuple can contain fields of any data type
* A bagisacollection of tuples
* A map key must be a chararray; a map value can be any datatype

Complex constants (either with or without values) can be used in the same places scalar
constants can be used; that is, in FILTER and GENERATE statements.

LOAD 'data’ USING MyStorage() AS (T: tuple(nane:chararray, age: int));
FILTER A BY T == ('john', 25);
FOREACH B CGENERATE T. nane, [25#5.6], {(1, 5, 18)};

O w >
i onn

4.6 Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH,
GROUP, and SPLIT operators as well asthe eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the
UTF-8 character set. Depending on the context, expressions can include:

* Any Pig datatype (simple data types, complex data types)

* Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)
* Any Pig built in function.

* Any user defined function (UDF) written in Java.

In Pig Latin,
* Anarithmetic expression could look like this:
X = GROUP A BY f2*f3;

A string expression could look like this, where aand b are both chararrays:

X = FOREACH A GENERATE CONCAT(a, b) ;

A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

Page 17

Pig Latin Basics

4.6.1 Field Expressions

Field expressions represent afield or a dereference operator applied to afield.

4.6.2 Star Expressions

Star expressions (*) can be used to represent all the fields of atuple. It isequivalent to
writing out the fields explicitly. In the following example the definition of B and C are
exactly the same, and MyUDF will be invoked with exactly the same argumentsin both
cases.

LOAD 'data' USING MyStorage() AS (nane:chararray, age: int);
FOREACH A GENERATE *, MyUDF(nane, age);
FOREACH A GENERATE nane, age, My/UDF(*);

0w >
I n

A common error when using the star expression is shown below. In this example, the
programmer really wants to count the number of elementsin the bag in the second field:
COUNT($1).

G = GROUP A BY $0;

C = FOREACH G GENERATE COUNT(*)

There are some restrictions on use of the star expression when the input schema is unknown
(null):
* For GROUP/COGROUP, you can't include a star expression in a GROUP BY column.

» For ORDER BY, if you have project-star as ORDER BY column, you can’t have any
other ORDER BY column in that statement.

4.6.3 Project-Range Expressions

Project-range (..) expressions can be used to project arange of columns from input. For
example:

o .. $x: projects columns $0 through $x, inclusive
* 93X ..: projects columns through end, inclusive
o 3x.. %y : projects columns through $y, inclusive

If the input relation has a schema, you can refer to columns by alias rather than by column
position. Y ou can also combine aliases and column positions in an expression; for example,
"coll.. $5" isvalid.

Project-range can be used in all cases where the star expression (*) is allowed.

Page 18

Pig Latin Basics

Project-range can be used in the following statements: FOREACH, JOIN, GROUP,
COGROUP, and ORDER BY (aso when ORDER BY is used within a nested FOREACH

block).
A few examples are shown here:

There are some restrictions on the use of project-to-end form of project-range (eg "x .. ")
when the input schemais unknown (null):

* For GROUP/COGROUP, the project-to-end form of project-range is not allowed.
» For ORDER BY, the project-to-end form of project-range is supported only as the last
sort column.

4.6.4 Boolean Expressions

Boolean expressions can be made up of UDFs that return a boolean value or boolean
operators (see Boolean Operators).

4.6.5 Tuple Expressions

Tuple expressions form subexpressionsinto tuples. The tuple expression has the form
(expression [, expression ...]), where expression is a general expression. The simplest tuple
expression is the star expression, which represents all fields.

Page 19

Pig Latin Basics

4.6.6 General Expressions

General expressions can be made up of UDFs and ailmost any operator. Since Pig does not
consider boolean a base type, the result of a general expression cannot be a boolean. Field
expressions are the ssimpliest general expressions.

4.7 Schemas

Schemas enable you to assign names to fields and declare types for fields. Schemas are
optional but we encourage you to use them whenever possible; type declarations result in
better parse-time error checking and more efficient code execution.

Schemas for simple types and complex types can be used anywhere a schema definition is
appropriate.
Schemas are defined with the LOAD, STREAM, and FOREACH operators using the AS

clause. If you define a schema using the LOAD operator, then it is the load function that
enforces the schema (see LOAD and User Defined Functions for more information).

Known Schema Handling
Note the following:

* You can define a schemathat includes both the field name and field type.

* You can define a schemathat includes the field name only; in this case, the field type
defaults to bytearray.

* You can choose not to define a schema; in this case, the field is un-named and the field
type defaults to bytearray.

If you assign aname to afield, you can refer to that field using the name or by positional
notation. If you don't assign anameto afield (the field is un-named) you can only refer to
the field using positional notation.

If you assign atype to afield, you can subsequently change the type using the cast operators.
If you don't assign atypeto afield, the field defaults to bytearray; you can change the default
type using the cast operators.

Unknown Schema Handling
Note the following:

* When you JOIN/COGROUP/CROSS multiple relations, if any relation has an unknown
schema (or no defined schema, also referred to as a null schema), the schemafor the
resulting relation is null.

» If you FLATTEN abag with empty inner schema, the schema for the resulting relation is
null.

Page 20

udf.html

Pig Latin Basics

» If you UNION two relations with incompatible schema, the schema for resulting relation
isnull.

» If theschemaisnull, Pig treats all fields as bytearray (in the backend, Pig will determine
the real type for the fields dynamically)

See the examples below. If afield's datatype is not specified, Pig will use bytearray to
denote an unknown type. If the number of fieldsis not known, Pig will derive an unknown
schema.

/* The field data types are not specified ... */
a =load '1.txt' as (a0, b0);
a: {a0: bytearray, b0: bytearray}

/* The nunber of fields is not known ... */
a =load '1.txt';
a: Schema for a unknown

How Pig Handles Schema

As shown above, with afew exceptions Pig can infer the schema of arelationship up front.

Y ou can examine the schema of particular relation using DESCRIBE. Pig enforces this
computed schema during the actual execution by casting the input data to the expected data
type. If the processis successful the results are returned to the user; otherwise, awarning is
generated for each record that failed to convert. Note that Pig does not know the actual types
of the fieldsin the input data prior to the execution; rather, Pig determines the data types and
performs the right conversions on the fly.

Having a deterministic schemais very powerful; however, sometimes it comes at the cost of
performance. Consider the following example:

load "input' as (x, Yy, z);
foreach A generate x+y;

A =
B =
If you do DESCRIBE on B, you will see a single column of type double. Thisis because Pig
makes the safest choice and uses the largest numeric type when the schemais not know. In
practice, the input data could contain integer values; however, Pig will cast the data to double
and make sure that a double result is returned.

If the schema of arelation can’t be inferred, Pig will just use the runtime data asis and
propagate it through the pipeline.

4.7.1 Schemas with LOAD and STREAM

With LOAD and STREAM operators, the schema following the AS keyword must be
enclosed in parentheses.

Page 21

test.html#describe
test.html#describe

Pig Latin Basics

In this example the LOAD statement includes a schema definition for simple data types.

4.7.2 Schemas with FOREACH

With FOREACH operators, the schemafollowing the AS keyword must be enclosed in
parentheses when the FLATTEN operator is used. Otherwise, the schema should not be
enclosed in parentheses.

In this example the FOREACH statement includes FLATTEN and a schema for simple data

<
3
R

In this example the FOREA CH statement includes a schema for simple expression.

In this example the FOREA CH statement includes a schemas for multiple fields.

4.7.3 Schemas for Simple Data Types

Simple data types include int, long, float, double, chararray, bytearray, boolean, datetime,
biginteger and bigdecimal.

4.7.3.1 Syntax

(dliad:type]) [, (aliag:type]) -..])

4.7.3.2 Terms

dias The name assigned to the field.

type (Optional) The simple data type assigned to the field.
The alias and type are separated by acolon (:).
If the type is omitted, the field defaults to type
bytearray.

(,) Multiple fields are enclosed in parentheses and
separated by commas.

Page 22

Pig Latin Basics

4.7.3.3 Examples

In this example the schema defines multiple types.

In thisexample field "gpa" will default to bytearray because no type is declared.

4.7.4 Schemas for Complex Data Types

Complex data types include tuples, bags, and maps.

4.7.5 Tuple Schemas
A tupleisan ordered set of fields.

4.7.5.1 Syntax

diadg:tuple] (aliadg:type]) [, (diadg:type]) ...])

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 23

Pig Latin Basics

4.7.5.2 Terms
dias The name assigned to the tuple.
‘tuple (Optional) The data type, tuple (case insensitive).
O The designation for atuple, aset of parentheses.
diag[:type] The constituents of the tuple, where the schema

definition rules for the corresponding type appliesto
the congtituents of the tuple:

o dias—thename assigned to thefield
» type (optional) —the simple or complex data type
assigned to thefield

4.7.5.3 Examples

In this example the schema defines one tuple. The load statements are equivalent.

In this example the schema defines two tuples.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 24

Pig Latin Basics

4.7.6 Bag Schemas

A bag isacollection of tuples.

4.7.6.1 Syntax
diag[:bag] {tuple}

4.7.6.2 Terms
dias The name assigned to the bag.
:bag (Optional) The data type, bag (case insensitive).
{} The designation for a bag, a set of curly brackets.
tuple A tuple (see Tuple Schema).

4.7.6.3 Examples

In this example the schema defines a bag. The two load statements are equivalent.

4.7.7 Map Schemas

A map isaset of key value pairs.

4.7.7.1 Syntax (<> demotes optional)

alias<:map> [<type> |

4,7.7.2 Terms

dias The name assigned to the map.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 25

Pig Latin Basics

‘map (Optional) The data type, map (case insensitive).

[1 The designation for amap, a set of straight brackets
[l

type (Optional) The datatype (all types alowed, bytearray
is the default).

The type applies to the map value only; the map key
isawaystype chararray (see Map).

If atypeisdeclared then ALL valuesin the map must
be of thistype.

4.7.7.3 Examples

In this example the schema defines an untyped map (the map values default to bytearray).
The load statements are equivalent.

This example shows the use of atyped maps.

4.7.8 Schemas for Multiple Types

Y ou can define schemas for data that includes multiple types.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 26

Pig Latin Basics

4.7.8.1 Example

In this example the schema defines a tuple, bag, and map.

4.7.8.2 Previous Relation Shortcut

There is a shortcut form to reference the relation on the previous line of a pig script or grunt
session:

5 Arithmetic Operators and More

5.1 Arithmetic Operators

5.1.1 Description

Operator Symbol Notes

addition +

subtraction -

multiplication *

division /

modulo % Returns the remainder of a divided
by b (a%b).
Works with integral numbers (int,
long).

bincond ?: (condition ? value if true:
value if false)
The bincond should be enclosed in
parenthesis.
The schemas for the two
conditional outputs of the bincond
should match.

Page 27

Pig Latin Basics

Use expressions only (relational
operators are not alowed).

case CASE WHEN THEN ELSE END = CASE expression [WHEN value
THEN value]+ [ELSE value]?
END

CASE [WHEN condition THEN
value]+ [ELSE value]? END

Case operator is equivalent to
nested bincond operators.

The schemas for al the outputs
of the when/el se branches should
match.

Use expressions only (relational
operators are not allowed).

5.1.1.1 Examples

Suppose we have relation A.

In this example the modul o operator is used with fields f1 and f2.

In this example the bincond operator is used with fields f2 and B. The condition is "f2 equals
1": if the condition is true, return 1; if the condition is false, return the count of the number of
tuplesin B.

Page 28

Pig Latin Basics

In this example the case operator is used with field f2. The expression is "f2 % 2"; if the
expression is equal to 0, return ‘even'’; if the expression is equal to 1, return ‘odd'.

This can be also written as follows:

5.1.1.2 Types Table: addition (+) and subtraction (-) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray
bag error error error error error error error error error
tuple notyet error error error error error error error
map error error error error error error error
int int long float double error cast as
int
long long float double | error cast as
long
float float double error cast as
float
double double | error cast as
double

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 29

chararray

bytearray

5.1.1.3 Types Table: multiplication (*) and division (/) operators

* bytearray cast asthis datatype

bag tuple map int long
bag error error error notyet notyet
tuple error error notyet | notyet
map error error error
int int long
long long

float

double

chararray

bytearray

5.1.1.4 Types Table: modulo (%) operator

int long
int int long
long long
bytearray
5.2 Boolean Operators
5.2.1 Description
Operator Symbol

float
not yet
not yet
error

float

float

float

Pig Latin Basics

error error

cast as
double

double chararray bytearray

notyet | error error
notyet | error error
error error error
double | error cast as
int
double error cast as
long
double | error cast as
float
double error cast as
double
error error
cast as
double
bytearray
cast asint
cast aslong
error
Notes

Page 30

Pig Latin Basics

AND and

OR or

IN in IN operator is equivalent to nested
OR operators.

NOT not

The result of aboolean expression (an expression that includes boolean and comparison
operators) is always of type boolean (true or false).

5.2.1.1 Example

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1)) OR (f1 IN (9, 10, 11));

5.3 Cast Operators

5.3.1 Description
Pig Latin supports casts as shown in this table.

from/ | bag tuple map int long float double ' chararray bytearray boolean
to

bag error error error error error error error error error
tuple error error error error error error error error error
map error error error error error error error error error
int error error error yes yes yes yes error error
long error error error yes yes yes yes error error
float error error error yes yes yes yes error error
double | error error error yes yes yes yes error error
chararray error error error yes yes yes yes error yes
bytearray yes yes yes yes yes yes yes yes yes
boolean | error error error error error error error yes error

5.3.1.1 Syntax

{(data_type) | (tuple(data_type)) | (bag{tuple(data_type)}) | (map(]) } field

Page 31

Pig Latin Basics

5.3.1.2 Terms
(data_type) The data type you want to cast to, enclosed in
parentheses. Y ou can cast to any data type except
bytearray (see the table above).
field The field whose type you want to change.
Thefield can be represented by positional notation
or by name (alias). For example, if f1isthefirst field
and type int, you can cast to type long using (Ilong)$0
or (long)f1.
5.3.1.3 Usage

Cast operators enable you to cast or convert data from one type to another, aslong as
conversion is supported (see the table above). For example, suppose you have an integer
field, myint, which you want to convert to a string. Y ou can cast thisfield from int to
chararray using (chararray)myint.

Please note the following:

» A field can be explicitly cast. Once cast, the field remains that type (it is not
automatically cast back). In this example $0 is explicitly cast to int.

B = FOREACH A GENERATE (int)$0 + 1;

* Where possible, Pig performsimplicit casts. In this example $0 is cast to int (regardless
of underlying data) and $1 is cast to double.

B = FOREACH A GENERATE $0 + 1, $1 + 1.0

* When two bytearrays are used in arithmetic expressions or a bytearray expression is used
with built in aggregate functions (such as SUM) they are implicitly cast to double. If the
underlying dataisreally int or long, you'll get better performance by declaring the type
or explicitly casting the data.

* Downcasts may cause loss of data. For example casting from long to int may drop bits.

5.3.2 Examples

In thisexample an int is cast to type chararray (see relation X).

A = LOAD 'data’ AS (fl:int,f2:int,f3:int);

DUMP A,
(1,2,3)

Page 32

Pig Latin Basics

In this example abytearray (fld in relation A) is cast to type tuple.

In this example abytearray (fld in relation A) is cast to type bag.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 33

Pig Latin Basics

In this example abytearray (fld in relation A) is cast to type map.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 34

Pig Latin Basics

5.3.3 Casting Relations to Scalars

Pig allows you to cast the elements of a single-tuple relation into ascalar value. The tuple
can be asingle-field or multi-field tulple. If the relation contains more than one tuple,
however, aruntime error is generated: "Scalar has more than one row in the output”.

The cast relation can be used in any place where an expression of the type would make
sense, including FOREACH, FILTER, and SPLIT. Notethat if an explicit cast is not used an
implict cast will be inserted according to Pig rules. Also, when the schema can't be inferred
bytearray is used.

The primary use case for casting relations to scalarsis the ability to use the values of global
aggregatesin follow up computations.

In this example the percentage of clicks belonging to a particular user are computed. For the
FOREACH statement, an explicit cast is used. If the SUM is not given a name, a position can
be used as well (userid, clicks/(double)C.$0).

A = load 'nydata' as (userid, clicks);

B = group A all;

C = foreach B genertate SUMA.clicks) as total;

D = foreach A generate userid, clicks/(double)C total;
dunp D;

In this example a multi-field tuple is used. For the FILTER statement, Pig performs an
implicit cast. For the FOREACH statement, an explicit cast is used.

A = load 'nydata' as (userid, clicks);

B = group A all;

C = foreach B genertate SUMA.clicks) as total, COUNT(A) as cnt;
D = FILTER A by clicks > C.total/3

E = foreach D generate userid, clicks/(double)C total, cnt;
dunp E;

5.4 Comparison Operators

5.4.1 Description

Operator Symbol Notes
equal ==

not equal 1=

lessthan <

greater than >

Page 35

Pig Latin Basics

less than or equal to <=
greater than or equal to >=
pattern matching matches Takes an expression on the left

and a string constant on the right.

expression matches string-
constant

Use the Java format for regular
expressions.

Use the comparison operators with numeric and string data.

5.4.2 Examples

Numeric Example

String Example

M atches Example

5.4.3 Types Table: equal (==) operator

bag tuple map int long float @ double chararr bytearr boolea datetin biginte bigdec
bag error |error error error error | efror | error | error | error | error | error | error | error
tuple boolea error | error error | error | error | efror | error | error | error | error | error
(see
Note
1
map boolea error | error error error | error | error | error | error | error | error
(see
Note
2)

Page 36

imal

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

Pig Latin Basics

int boolea boolea boolea boolea error cast error | error | error | error
as
boolea
long boolea boolea boolea error cast | error error | error | error
as
boolea
float boolea boolea error | cast | error error | error | error
as
boolea
double boolea error cast error error | error | error
as
boolea
chararr boolea cast error | error error @ error
as
boolea
bytearr boolea error ' error error | error
boolea boolea error error | error
datetin boolea error = error
biginte boolea error
bigdeci boolean

Note 1. boolean (Tuple A is equal to tuple B if they havethe same size s, and for all 0 <=1i <
sA[i] ==BJi])

Note 2: boolean (Map A isequal to map B if A and B have the same number of entries, and
for every key k1in A with avaue of v1, thereisakey k2 in B with avalue of v2, such that
kl==k2andvl==v2)

5.4.4 Types Table: not equal (I=) operator

bag tuple map int long float ' double chararr bytearr boolea datetin biginte bigdecimal
bag error error error eror error | eror | error | eror error | error | error | error - error
tuple error | error | error | error | error | error | error | error | error | error | error | error

map error error error | error error error error error error error | error

Page 37

int

long

float

double

chararr

bytearr
boolea
datetin
biginte

bigdeci

boolea boolea boolea boolea error

boolea boolea boolea error

5.4.5 Types Table: matches operator

*Cast as chararray (the second argument must be chararray)

chararray

bytearray

chararray
boolean

boolean

boolea boolea error

boolea error

boolea

Pig Latin Basics

booleal error error | error
(bytear

cast

as

int)

boolea error error | error
(bytear

cast

as

long)

booleal error error | error
(bytear

cast

as

float)

boolea error error | error
(bytear

cast

as

double

booleal error error | error
(bytear

cast

as

chararr

boolea error error error
boolea error error

boolea error

error

error

error

error

error

error

error

error

boolea error

bytearray*
boolean

boolean

boolean

Page 38

Pig Latin Basics

5.5 Type Construction Operators
5.5.1 Description

Operator Symbol Notes

tuple constructor O Use to construct atuple from the
specified elements. Equivalent to
TOTUPLE.

bag constructor {} Use to construct a bag from the
specified elements. Equivalent to
TOBAG.

map constructor [Use to construct a map from the
specified elements. Equivalent to
TOMAP.

Note the following:

* These operators can be used anywhere where the expression of the corresponding typeis
acceptable including FOREACH GENERATE, FILTER, etc.

* A single element enclosed in parens () like (5) is not considered to be atuple but rather
an arithmetic operator.

» For bags, every element is put in the bag; if the element is not atuple Pig will create a
tuple for it:
e Giventhis{$1, $2} Pig createsthis{($1), ($2)} abag with two tuples

... heither $1 and $2 are tuples so Pig creates a tuple around each item

e Giventhis{($1), $2} Pig createsthis{($1), ($2)} abag with two tuples
... since ($1) istreated as $1 (one cannot create a single element tuple using this
syntax), { ($1), $2} becomes {$1, $2} and Pig creates a tuple around each item

« Giventhis{ (%1, $2)} Pig createsthis{($1, $2)} abag with asingletuple
... Pig creates atuple ($1, $2) and then puts this tuple into the bag

5.5.2 Examples
Tuple Construction
A = load 'students' as (nane:chararray, age:int, gpa:float);

B = foreach A generate (nane, age);
store Binto 'results';

Page 39

func.html#totuple
func.html#tobag
func.html#tomap

Pig Latin Basics

Bag Construction

Map Construction

5.6 Dereference Operators

5.6.1 Description

Operator

Symbol

Notes

tuple dereference

tuple.id or tuple.(id,...)

Tuple dereferencing can be done
by name (tuple.field_name) or
position (mytuple.$0). If a set of
fields are dereferenced (tuple.
(namel, name2) or tuple.($0,

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 40

Pig Latin Basics

$1)), the expression represents a
tuple composed of the specified
fields. Note that if the dot operator
is applied to a bytearray, the
bytearray will be assumed to be a
tuple.

bag dereference bag.id or bag.(id,...) Bag dereferencing can be done by
name (bag.field_name) or position
(bag.$0). If aset of fieldsare
dereferenced (bag.(namel, name2)
or bag.($0, $1)), the expression
represents a bag composed of the
specified fields.

map dereference map# key' Map dereferencing must be

done by key (field_namettkey or
$0#key). If the pound operator

is applied to a bytearray, the
bytearray is assumed to be a map.
If the key does not exist, the empty
string is returned.

5.6.2 Examples

Tuple Example
Suppose we have relation A.

In this example dereferencing is used to retrieve two fields from tuple f2.

Bag Example

Page 41

Pig Latin Basics

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

In this example dereferencing is used with relation X to project the first field (f1) of each
tuplein the bag (a).

Tuple/Bag Example

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field namesin relation B).

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 42

Pig Latin Basics

In this example dereferencing is used to project afield (f1) from atuple (group) and afield
(f1) from abag (a).

Map Example
Suppose we have relation A.

In this example dereferencing is used to look up the value of key ‘open'.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 43

Pig Latin Basics

5.7 Disambiguate Operator

After JOIN, COGROUP, CROSS, or FLATTEN operations, the field names have the
orginia alias and the disambiguate operator (::) prepended in the schema. The disambiguate
operator is used to identify field namesin case there is aambiguity.

In this example, to disambiguate y, use A::y or B::y. In cases where there is no ambiguity,
such as z, the :: is not necessary but is still supported.

|l oad 'datal' as (x, Y);

|l oad 'data2' as (x, y, z);

join A by x, B by x;

foreach C generate Ai:y, z; -- Cannot sinply refer toy as it can refer to Ai:y or B::y

o0 w>

In cases where the schema is stored as part of the StoreFunc like PigStorage, JsonStorage,
AvroStorage or OrcStorage, users generally have to use an extra FOREA CH before STORE
to rename the field names and remove the disambiguate operator from the names. To
automatically remove the disambiguate operator from the schemafor the STORE operation,
the pig.store.schema.disambiguate Pig property can be set to "false”. It is the responsibility of
the user to make sure that there is no conflict in the field names when using this setting.

5.8 Flatten Operator

The FLATTEN operator looks like a UDF syntactically, but it is actually an operator that
changes the structure of tuples and bagsin away that a UDF cannot. Flatten un-nests tuples,
bags and maps. The idea is the same, but the operation and result is different for each type of
structure.

For tuples, flatten substitutes the fields of atuple in place of the tuple. For example, consider
arelation that has atuple of the form (a, (b,)). The expression GENERATE $0, flatten($1),
will cause that tuple to become (a, b,).

For bags, the situation becomes more complicated. When we un-nest a bag, we create new
tuples. If we have arelation that is made up of tuples of the form ({ (b,c),(d,e)}) and we apply
GENERATE flatten($0), we end up with two tuples (b,c) and (d,e). When we remove a level
of nesting in a bag, sometimes we cause a cross product to happen. For example, consider a
relation that has atuple of the form (a, { (b,c), (d,e)}), commonly produced by the GROUP
operator. If we apply the expression GENERATE $0, flatten($1) to this tuple, we will create
new tuples: (a, b, ¢) and (a, d, €).

For maps, flatten creates a tuple with two fields containing the key and value. If we have
amap field named kvpair with input as (m[k1#v1, k2#v2]) and we apply GENERATE

flatten(kvpair), it will generate two tuples (k1,v1) and (k2,v2) which can be accessed as
kvpair::key and kvpair::value.

Page 44

Pig Latin Basics

When there are additional projectionsin the expression, a cross product will happen similar
to bags. For example, if we apply the expression GENERATE $0, FLATTEN($1) to the
input tuple (a, m[k1#1, k2#2, k3#3]), we will see (a,k1,1), (a,k2,2) and (a,k3,3) asthe result.

For other types, flatten becomes a no-op and simply returns the passed value.

Also note that the flatten of empty bag will result in that row being discarded; no output is
generated. (See aso Drop Nulls Before a Join.)

Asfor flatten with null values, see Nullsand FLATTEN operator.

For examples using the FLATTEN operator, see FOREACH.

5.9 Null Operators

5.9.1 Description

Operator Symbol Notes
isnull isnull
isnot null isnot null

For a detailed discussion of nulls see Nulls and Pig Latin.

5.9.2 Examples

In this example, values that are not null are obtained.

5.9.3 Types Table

The null operators can be applied to all datatypes (see Nulls and Pig Latin).

5.10 Sign Operators
5.10.1 Description

Operator Symbol Notes

Page 45

perf.html#nulls

Pig Latin Basics

positive + Has no effect.
negative (negation) - Changes the sign of a positive or
negative number.

5.10.2 Examples

In this example, the negation operator is applied to the "x" values.

5.10.3 Types Table: negative (-) operator

bag error

tuple error

map error

int int

long long

float float
double double
chararray error
bytearray double (as double)
datetime error
biginteger biginteger
bigdecimal bigdecimal

6 Relational Operators

6.1 ASSERT

Assert acondition on the data.
6.1.1 Syntax

ASSERT aliasBY expression [, messagel;

Page 46

Pig Latin Basics

6.1.2 Terms

dias The name of the relation.

BY Required keyword.

expression A boolean expression.

message Error message when assertion fails.
6.1.3 Usage

Use assert to ensure a condition is true on your data. Processing failsif any of the records
voilate the condition.

6.1.4 Examples

Suppose we have relation A.

Now, you can assert that a0 column in your datais >0, fail if otherwise

6.2 COGROUP
See the GROUP operator.

6.3 CROSS

Computes the cross product of two or more relations.

6.3.1 Syntax

dias= CROSS dlias, dias|[, dias...] [PARTITION BY partitioner] [PARALLEL n];

Page 47

Pig Latin Basics

6.3.2 Terms

dias The name of arelation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

e For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

» For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.3.3 Usage

Use the CROSS operator to compute the cross product (Cartesian product) of two or more
relations.

CROSS is an expensive operation and should be used sparingly.

6.3.4 Example

Suppose we have relations A and B.

In this example the cross product of relation A and B is computed.

Page 48

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel

Pig Latin Basics

(4,2,1,1,3)

6.4 CUBE

Performs cube/rollup operations.

6.4.1 Cube operation

Cube operation computes aggregates for all possbile combinations of specified group by
dimensions. The number of group by combinations generated by cube for n dimensions will
be 2™n.

6.4.2 Rollup operation

Rollup operations computes multiple levels of aggregates based on hierarchical ordering of
specified group by dimensions. Rollup is useful when there is hierarchical ordering on the
dimensions. The number of group by combinations generated by rollup for n dimensions will
be n+1.

6.4.3 Syntax

alias= CUBE aliasBY { CUBE expression | ROLLUP expression }, [CUBE expression | ROLLUP
expression] [PARALLEL nJ;

6.4.4 Terms
dias The name of the relation.
CUBE Keyword
BY Keyword
expression Projections (dimensions) of the relation. Supports
field, star and project-range expressions.
ROLLUP Keyword
PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.
For more information, see Use the Parallel Features.
6.4.5 Example

6.4.6 Basic usage of CUBE operation

Page 49

perf.html#parallel

Pig Latin Basics

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
cube operation will output

6.4.7 Output schema

Note the second column, ‘cube’ field which isabag of all tuplesthat belong to ‘group’.
Also note that the measure attribute ‘ sales’ along with other unused dimensionsin load
statement are pushed down so that it can be referenced later while computing aggregates on
the measure, like in this case SUM (cube.sales).

6.4.8 Basic usage of ROLLUP operation

For a sampleinput tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
rollup operation will output

6.4.9 Output schema

Pig Latin Basics

6.4.10 Basic usage of CUBE and ROLLUP operation combined

If CUBE and ROLLUP operations are used together, the output groups will be the cross
product of al groups generated by cube and rollup operation. If there are m dimensionsin
cube operations and n dimensions in rollup operation then overall number of combinations
will be (2"m) * (n+1).

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
cube and rollup operation will output

6.4.11 Output schema

6.4.12 Handling null values in dimensions

Since null values are used to represent subtotalsin cube and rollup operation, in order
to differentiate the legitimate null values that already exists as dimension values, CUBE

Page 51

Pig Latin Basics

operator converts any null valuesin dimensions to "unknown" value before performing cube
or rollup operation. For example, for CUBE(product,location) with a sample tuple (car,) the
output will be

(car, unknown)
(car,)
(, unknown)

()

6.5 DEFINE
See:

« DEFINE (UDFs, streaming)
o DEFINE (macros)

6.6 DISTINCT

Removes duplicate tuplesin arelation.
6.6.1 Syntax

dias= DISTINCT alias[PARTITION BY partitioner] [PARALLEL n;

6.6.2 Terms

dias The name of the relation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

e For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

e For usage, see Example: PARTITION BY.

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.6.3 Usage

Use the DISTINCT operator to remove duplicate tuplesin arelation. DISTINCT does not
preserve the original order of the contents (to eliminate duplicates, Pig must first sort the
data). Y ou cannot use DISTINCT on a subset of fields; to do this, use FOREACH and

Page 52

basic.html#define-udfs
cont.html#define-macros
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel

Pig Latin Basics

anested block to first select the fields and then apply DISTINCT (see Example: Nested
Block).

6.6.4 Example

Suppose we have relation A.

In this example al duplicate tuples are removed.

6.7 FILTER

Selects tuples from arelation based on some condition.

6.7.1 Syntax
dias=FILTER alias BY expression;
6.7.2 Terms
dias The name of the relation.
BY Required keyword.
expression A boolean expression.
6.7.3 Usage

Use the FILTER operator to work with tuples or rows of data (if you want to work with
columns of data, use the FOREA CH...GENERATE operation).

FILTER is commonly used to select the data that you want; or, conversely, to filter out
(remove) the data you don’t want.

Page 53

Pig Latin Basics

6.7.4 Examples

Suppose we have relation A.

In this example the condition states that if the third field equals 3, then include the tuple with
relation X.

In this example the condition states that if the first field equals 8 or if the sum of fieldsf2 and
f3 isnot greater than first field, then include the tuple relation X.

6.8 FOREACH

Generates data transformations based on columns of data.

6.8.1 Syntax

alias = FOREACH { block | nested block };

6.8.2 Terms
dias The name of relation (outer bag).
block FOREACH...GENERATE block used with arelation
(outer bag). Use this syntax:

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 54

nested_block

expression
nested alias

nested op

nested_exp
AS

schema

Pig Latin Basics

alias = FOREACH dlias GENERATE expression [AS
schema] [expression [AS schemad]...];

See Schemas

Nested FOREACH...GENERATE block used with a
inner bag. Use this syntax:

alias= FOREACH nested_alias{

alias = {nested_op | nested_exp}; [{alias=
{nested_op | nested_exp}; ...]

GENERATE expression [AS schema] [expression
[ASschemd]....]

1
Where:

The nested block is enclosed in opening and closing
brackets{ ... }.

The GENERATE keyword must be the last statement
within the nested block.

See Schemas
Macros are NOT dlllowed inside a nested block.

An expression.
The name of the inner bag.
Allowed operations are CROSS, DISTINCT,

FILTER, FOREACH, LIMIT, and ORDER BY..

Note: FOREACH statements can be nested to two
levelsonly. FOREACH statements that are nested to
three or more levels will result in agrammar error.

Y ou can also perform projections within the nested
block.

For examples, see Example: Nested Block.

Any arbitrary, supported expression.
Keyword

A schemausing the AS keyword (see Schemas).

e |fthe FLATTEN operator is used, enclose the
schemain parentheses.

e |fthe FLATTEN operator is not used, don't
enclose the schema in parentheses.

Page 55

Pig Latin Basics

6.8.3 Usage

Use the FOREACH...GENERATE operation to work with columns of data (if you want to
work with tuples or rows of data, use the FILTER operation).

FOREACH...GENERATE works with relations (outer bags) as well as inner bags:
* If Alisareation (outer bag), a FOREACH statement could look like this.

If A isaninner bag, a FOREACH statement could look like this.

6.8.4 Example: Projection

In this example the asterisk (*) is used to project al fields from relation A to relation X.
Relation A and X areidentical.

In this example two fields from relation A are projected to form relation X.

6.8.5 Example: Nested Projection

In thisexampleif one of the fields in the input relation is atuple, bag or map, we can perform
aprojection on that field (using a deference operator).

Page 56

Pig Latin Basics

In this example multiple nested columns are retained.

6.8.6 Example: Schema

In this example two fieldsin relation A are summed to form relation X. A schemais defined
for the projected field.

6.8.7 Example: Applying Functions

In this example the built in function SUM() is used to sum a set of numbersin a bag.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 57

Pig Latin Basics

6.8.8 Example: Flatten
In this example the FLATTEN operator is used to eliminate nesting.

Another FLATTEN example.

Another FLATTEN example. Note that for the group '4' in C, there are two tuplesin each
bag. Thus, when both bags are flattened, the cross product of these tuplesis returned; that is,
tuples (4, 2, 6), (4, 3, 6), (4,2,9), and (4, 3, 9).

Another FLATTEN example. Here, relations A and B both have a column x. When forming
relation E, you need to use the :: operator to identify which column x to use - either relation
A column x (A::x) or relation B column x (B::x). This example usesrelation A column x

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 58

Pig Latin Basics

A FLATTEN example on amap type. Here we load an integer and map (of integer values)
into A. Then m gets flattened, and finally we are filtering the result to only include tuples
where the value among the un-nested map entries was 5.

6.8.9 Example: Nested Block
In this example a CROSS is performed within the nested block.

In this example FOREACH is nested to the second level.

This example shows a CROSS and FOREA CH nested to the second level.

Suppose we have relations A and B. Note that relation B contains an inner bag.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 59

Pig Latin Basics

In this example we perform two of the operations allowed in a nested block, FILTER and
DISTINCT. Note that the last statement in the nested block must be GENERATE. Also, note
the use of projection (PA = FA.outlink;) to retrieve afield. DISTINCT can be applied to a
subset of fields (as opposed to arelation) only within a nested block.

6.9 GROUP

Groups the data in one or more relations.

Note: The GROUP and COGROUP operators are identical. Both operators work with one

or more relations. For readability GROUP is used in statements involving one relation and
COGROUP is used in statements involving two or more relations. Y ou can COGROUP up to
but no more than 127 relations at atime.

6.9.1 Syntax

alias= GROUP dlias{ ALL | BY expression} [, aliasALL |BY expression ...] [USING 'collected' | 'merge]]
[PARTITION BY partitioner] [PARALLEL n];

6.9.2 Terms

| dias |Thenameofare|ation.

Page 60

ALL

BY

expression

USING

‘collected'

'merge’

Pig Latin Basics

Y ou can COGROUP up to but no more than 127
relations at atime.

Keyword. Use ALL if you want all tuplestogoto a
single group; for example, when doing aggregates
across entire relations.

B =GROUPA ALL;

Keyword. Use this clause to group the relation by
field, tuple or expression.

B = GROUP A BY f1;

A tuple expression. Thisisthe group key or key field.
If the result of the tuple expressionisasingle field,
the key will be the value of the first field rather than
atuple with onefield. To group using multiple keys,
enclose the keysin parentheses:

B = GROUP A BY (keyl,key2);
Keyword

Usethe ‘collected’ clause with the GROUP operation
(works with one relation only).

The following conditions apply:

e Theloader must implement the
{ Collectablel oader} interface.
e Datamust be sorted on the group key.

If your data and loaders satisfy these conditions,

use the ‘collected’ clause to perform an optimized
version of GROUP; the operation will execute on the
map side and avoid running the reduce phase.

Use the ‘merge’ clause with the COGROUP
operation (works with two or more relations only).

The following conditions apply:

* No other operations can be done between the
LOAD and COGROUP statements.

e Datamust be sorted on the COGROUP key for
all tablesin ascending (ASC) order.

e Nullsare considered smaller than evertyhing. If
data contains null keys, they should occur before
anything else.

e Left-most loader must implement the
{ CollectablelL oader} interface aswell as
{ OrderedLoadFunc} interface.

Page 61

Pig Latin Basics

e All other loaders must implement
I ndexabl el oadFunc.

e Typeinformation must be provided in the
schemafor al the loaders.

If your data and loaders satisfy these conditions, the
‘merge’ clause to perform an optimized version of
COGROUP; the operation will execute on the map
side and avoid running the reduce phase.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

» For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

e For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.9.3 Usage

The GROUP operator groups together tuples that have the same group key (key field).
The key field will be atupleif the group key has more than one field, otherwise it will be
the same type as that of the group key. The result of a GROUP operation is arelation that
includes one tuple per group. This tuple contains two fields:

* Thefirst field isnamed "group” (do not confuse this with the GROUP operator) and is
the same type as the group key.

* The second field takes the name of the original relation and is type bag.

* Thenames of both fields are generated by the system as shown in the example below.

Note the following about the GROUP/COGROUP and JOIN operators:

e The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates aflat set of output tuples

* The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and GROUP/COGROUP Operataors).

6.9.4 Example
Suppose we have relation A.

A = load 'student' AS (nane:chararray, age:int, gpa:float);

Page 62

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#Parallel

Pig Latin Basics

Now, suppose we group relation A on field "age" for form relation B. We can use the
DESCRIBE and ILLUSTRATE operators to examine the structure of relation B. Relation
B hastwo fields. Thefirst field is named "group” and istype int, the same asfield "age" in
relation A. The second fieldisname"A" after relation A and istype bag.

Continuing on, as shown in these FOREACH statements, we can refer to the fieldsin relation
B by names "group™" and "A" or by positional notation.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 63

Pig Latin Basics

6.9.5 Example

Suppose we have relation A.

In this example the tuples are grouped using an expression, f2*f3.

6.9.6 Example
Suppose we have two relations, A and B.

In this example tuples are co-grouped using field “owner” from relation A and field “friend2”
from relation B as the key fields. The DESCRIBE operator shows the schemafor relation X,
which has three fields, "group”, "A" and "B" (see the GROUP operator for information about
the field names).

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 64

Pig Latin Basics

Relation X looks like this. A tupleis created for each unique key field. The tuple includes the
key field and two bags. Thefirst bag is the tuples from the first relation with the matching
key field. The second bag is the tuples from the second relation with the matching key field.
If no tuples match the key field, the bag is empty.

6.9.7 Example

This example shows how to group using multiple keys.

6.9.8 Example: PARTITION BY
To use the Hadoop Partitioner add PARTITION BY clause to the appropriate operator:

Hereisthe code for SimpleCustomPartitioner:

6.10 IMPORT
See IMPORT (macros)

Page 65

cont.html#import-macros

6.11 JOIN (inner)

Pig Latin Basics

Performs an inner join of two or more relations based on common field values.

6.11.1 Syntax

alias= JOIN diasBY {expression|(‘expression [, expression ...])} (, diasBY {expression|(‘expression [,
expression ...]"0)'} ...) [USING 'replicated | 'bloom'’ | 'skewed' | 'merge’ | 'merge-sparse’] [PARTITION BY

partitioner] [PARALLEL nJ;

6.11.2 Terms
dias
BY

expression

USING

'replicated'

'bloom’
'skewed'
'merge’

'merge-sparse’

PARTITION BY partitioner

PARALLEL n

The name of arelation.
Keyword

A field expression.

Example: X = JOIN A BY fieldA, B BY fieldB, C
BY fieldC;

Keyword

Use to perform replicated joins (see Replicated
Joins).

Use to perform bloom joins (see Bloom Joins).
Use to perform skewed joins (see Skewed Joins).
Use to perform merge joins (see Merge Joins).

Use to perform merge-sparse joins (see Merge-Sparse
Joins).

Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

* For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

e For usage, see Example: PARTITION BY

This feature CANNOT be used with skewed joins.

Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

Page 66

perf.html#replicated-joins
perf.html#replicated-joins
perf.html#bloom-joins
perf.html#skewed-joins
perf.html#merge-joins
perf.html#merge-sparse-joins
perf.html#merge-sparse-joins
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel

Pig Latin Basics

6.11.3 Usage

Use the JOIN operator to perform an inner, equijoin join of two or more relations based on
common field values. Inner joinsignore null keys, so it makes sense to filter them out before
thejoin.

Note the following about the GROUP/COGROUP and JOIN operators:

* The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates aflat set of output tuples.

* The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and JOIN Operator).

Sdlf Joins

To perform self joinsin Pig load the same data multiple times, under different aliases, to
avoid naming conflicts.

In this example the same datais |loaded twice using aliases A and B.

6.11.4 Example

Suppose we have relations A and B.

In thisexamplerelations A and B are joined by their first fields.

Page 67

Pig Latin Basics

6.12 JOIN (outer)

Performs an outer join of two relations based on common field values.

6.12.1 Syntax
alias= JOIN left-alias BY left-alias-column [LEFT|RIGHT|FULL] [OUTER], right-alias BY right-alias-
column [USING 'replicated’ | 'bloom' | 'skewed' | 'merge] [PARTITION BY partitioner] [PARALLEL n];
6.12.2 Terms

dias The name of arelation. Appliesto aias, |eft-alias and
right-alias.

dias-column The name of the join column for the corresponding
relation. Appliesto left-alias-column and right-alias-
column.

BY Keyword

LEFT L eft outer join.

RIGHT Right outer join.

FULL Full outer join.

OUTER (Optional) Keyword

USING Keyword

'replicated' Use to perform replicated joins (see Replicated
Joins).
Only left outer join is supported for replicated joins.

'bloom' Use to perform bloom joins (see Bloom Joins).
Full outer join is not supported for bloom joins.

'skewed' Use to perform skewed joins (see Skewed Joins).

Page 68

perf.html#replicated-joins
perf.html#replicated-joins
perf.html#bloom-joins
perf.html#skewed-joins

Pig Latin Basics

'merge’ Use to perform merge joins (see Merge Joins).
PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.

The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

» For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

e For usage, see Example: PARTITION BY

This feature CANNOT be used with skewed joins.

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.12.3 Usage

Use the JOIN operator with the corresponding keywords to perform left, right, or full outer
joins. The keyword OUTER is optional for outer joins; the keywords LEFT, RIGHT and
FULL will imply left outer, right outer and full outer joins respectively when OUTER is
omitted. The Pig Latin syntax closely adheres to the SQL standard.

P ease note the following:

* OQuter joinswill only work provided the relations which need to produce nulls (in the case
of non-matching keys) have schemas.

* Quter joinswill only work for two-way joins; to perform amulti-way outer join, you will
need to perform multiple two-way outer join statements.

6.12.4 Examples

This example shows a left outer join.

A = LOAD '"a.txt' AS (n:chararray, a:int);
B = LOAD 'b.txt' AS (n:chararray, mchararray);
C =JAON A by $0 LEFT QUTER, B BY $0;

This example shows afull outer join.

LOAD 'a.txt' AS (n:chararray, a:int);
LOAD 'b.txt' AS (n:chararray, mchararray);
JON A BY $0 FULL, B BY $0;

0w >
I mnn

This example shows areplicated left outer join.

Page 69

perf.html#merge-joins
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel

Pig Latin Basics

This example shows a bloom right outer join.

This example shows a skewed full outer join.

6.13 LIMIT

Limits the number of output tuples.

6.13.1 Syntax
dias=LIMIT dlias n;
6.13.2 Terms
dias The name of arelation.
n The number of output tuples, either:
« aconstant (for example, 3)
e ascaar usedin an expression (for example,
€.sum/100)
Note: The expression can consist of constants or
scalars; it cannot contain any columns from the input
relation.
Note: Using a scalar instead of aconstant in LIMIT
automatically disables most optimizations (only
push-before-foreach is performed).
6.13.3 Usage

Usethe LIMIT operator to limit the number of output tuples.

If the specified number of output tuplesis equal to or exceeds the number of tuplesin the
relation, all tuplesin the relation are returned.

Page 70

Pig Latin Basics

If the specified number of output tuplesisless than the number of tuplesin the relation,

then n tuples are returned. There is no guarantee which n tuples will be returned, and the
tuples that are returned can change from one run to the next. A particular set of tuples can be
requested using the ORDER operator followed by LIMIT.

Note: The LIMIT operator allows Pig to avoid processing all tuplesin arelation. In most
cases aquery that uses LIMIT will run more efficiently than an identical query that does not
use LIMIT. It isalways agood ideato use limit if you can.

6.13.4 Examples

In this example the limit is expressed as a scalar.

Suppose we have relation A.

In this example output is limited to 3 tuples. Note that there is no guarantee which three
tuples will be output.

In this example the ORDER operator is used to order the tuples and the LIMIT operator is
used to output the first three tuples.

Pig Latin Basics

6.14 LOAD

Loads data from the file system.

6.14.1 Syntax

LOAD 'data [USING function] [AS schema];

6.14.2 Terms

'datal

The name of thefile or directory, in single quotes.

If you specify adirectory name, all thefilesin the
directory are loaded.

Y ou can use Hadoop globing to specify files at
the file system or directory levels (see Hadoop
globStatus for details on globing syntax).

Note: Pig uses Hadoop globbing so the functionality
isIDENTICAL. However, when you run from the
command line using the Hadoop fs command (rather
than the Pig LOAD operator), the Unix shell may
do some of the substitutions; this could alter the
outcome giving the impression that globing works
differently for Pig and Hadoop. For example:

e Thisworks
hadoop fs-Is/
mydata/20110423{ 00,01,02,03,04,05,06,07,08,09,
{10..23}} 00//part

e Thisdoes not work
LOAD '/
mydata/20110423{ 00,01,02,03,04,05,06,07,08,09,
{10..23}}00//part

USING

Keyword.

If the USING clause is omitted, the default 1oad
function PigStorage is used.

Page 72

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)

Pig Latin Basics

function The load function.

* Youcan useahbuilt in function (see Load/
Store Functions). PigStorage is the default
load function and does not need to be specified
(simply omit the USING clause).

* You can write your own load function if your
dataisin aformat that cannot be processed
by the built in functions (see User Defined

Functions).
AS Keyword.
schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

The loader produces the data of the type specified
by the schema. If the data does not conform to the
schema, depending on the loader, either anull value
or an error is generated.

Note: For performance reasons the loader may not
immediately convert the data to the specified format;
however, you can still operate on the data assuming

the specified type.

6.14.3 Usage
Use the LOAD operator to load data from the file system.

6.14.4 Examples

Suppose we have a data file called myfile.txt. The fields are tab-delimited. The records are
newline-separated.

In this example the default load function, PigStorage, |oads data from myfile.txt to form
relation A. Thetwo LOAD statements are equivalent. Note that, because no schemais
specified, the fields are not named and all fields default to type bytearray.

Page 73

func.html#load-store-functions
func.html#load-store-functions
udf.html
udf.html

Pig Latin Basics

In this example a schemais specified using the AS keyword. The two LOAD statements are
equivalent. You can use the DESCRIBE and ILLUSTRATE operators to view the schema.

For examples of how to specify more complex schemas for use with the LOAD operator, see
Schemas for Complex Data Types and Schemas for Multiple Types.

6.15 NATIVE
Executes native MapReduce/Tez jobs inside a Pig script.

6.15.1 Syntax
dliasl = NATIVE 'nativejar' STORE alias2 INTO 'inputLocation' USING storeFunc LOAD ‘outputL ocation'
USING loadFunc AS schema [params, ... '];
6.15.2 Terms
aliasl, alias? The names of relations.
native.jar Thejar file containing MapReduce or Tez program
(enclosed in single quotes).
Y ou can specify any MapReduce/Tez jar file that can
be run through the hadoop jar native.jar
par ans command.
The values for inputL ocation and outputL ocation can
be passed in the params.
STORE ... INTO ... USING See STORE

Page 74

basic.html#store

Pig Latin Basics

Store aias2 into the inputL ocation using storeFunc,
which isthen used by the MapReduce/Tez job to read
its data.

LOAD ... USING ... AS See LOAD

After running native.jar's MapReduce/Tez job, load
back the data from outputL ocation into aliasl using
loadFunc as schema.

“params, ..." Extra parameters required for the mapreduce/tez job
(enclosed in back tics).

6.15.3 Usage

Use the NATIVE operator to run native MapReduce/Tez jobs from inside a Pig script.

The input and output locations for the MapReduce/Tez program are conveyed to Pig using
the STORE/LOAD clauses. Pig, however, does not pass this information (nor require that
thisinformation be passed) to the MapReduce/Tez program. If you want to pass the input and
output locations to the MapReduce/Tez program you can use the params clause or you can
hardcode the locations in the MapReduce/Tez program.

6.15.4 Example

This example demonstrates how to run the wordcount MapReduce progam from Pig. Note
that the files specified as input and output locations in the NATIVE statement will NOT be
deleted by Pig automatically. You will need to delete them manually.

LOAD ' Wordcount | nput . txt"';
NATI VE ' wordcount.jar' STORE A INTO 'inputDir' LOAD 'outputDir'
AS (word: chararray, count: int) “org.nyorg. WrdCount inputDir outputDir";

A
B

6.16 ORDER BY

Sorts arelation based on one or more fields.
6.16.1 Syntax

alias= ORDER diasBY { * [ASCIDESC] | field_alias[ASC|DESC] [, field_alias[ASC|DESC] ...] }
[PARALLEL nj;

6.16.2 Terms

dias The name of arelation.

* The designator for atuple.

Page 75

basic.html#load

Pig Latin Basics

field alias A field in therelation. The field must be asimple
type.

ASC Sort in ascending order.

DESC Sort in descending order.

PARALLEL n Increase the parallelism of ajob by specifying the

number of reduce tasks, n.
For more information, see Use the Parallel Features.

6.16.3 Usage

Note: ORDER BY isNOT stable; if multiple records have the same ORDER BY key, the
order in which these records are returned is not defined and is not guarantted to be the same
from one run to the next.

In Pig, relations are unordered (see Relations, Bags, Tuples, Fields):

If you order relation A to produce relation X (X = ORDER A BY * DESC;) relations A
and X still contain the same data.

If you retrieve relation X (DUMP X;) the data is guaranteed to be in the order you
specified (descending).

However, if you further processrelation X (Y = FILTER X BY $0 > 1;) thereis

no guarantee that the data will be processed in the order you originally specified
(descending).

Pig currently supports ordering on fields with simple types or by tuple designator (*). Y ou
cannot order on fields with complex types or by expressions.

6.16.4 Examples

Suppose we have relation A.

Page 76

perf.html#parallel

Pig Latin Basics

In thisexamplerelation A is sorted by the third field, f3 in descending order. Note that the
order of the three tuples ending in 3 can vary.

6.17 RANK

Returns each tuple with the rank within arelation.
6.17.1 Syntax

dias= RANK dias[BY { * [ASC|DESC] | field_alias [ASC|DESC] [, field_alias [ASCIDESC] ...] }
[DENSE] |;

6.17.2 Terms
aias The name of arelation.
* The designator for atuple.
field alias A field in therelation. The field must be asimple
type.
ASC Sort in ascending order.
DESC Sort in descending order.
DENSE No gap in the ranking values.
6.17.3 Usage

When specifying no field to sort on, the RANK operator smply prepends a sequential value
to each tuple.

Otherwise, the RANK operator uses each field (or set of fields) to sort the relation. The rank
of atupleisone plus the number of different rank values preceding it. If two or more tuples
tie on the sorting field values, they will receive the same rank.

NOTE: When using the option DENSE, ties do not cause gaps in ranking val ues.

Page 77

Pig Latin Basics

6.17.4 Examples

Suppose we have relation A.

In this example, the RANK operator does not change the order of the relation and ssimply
prepends to each tuple a sequential value.

In this example, the RANK operator works with f1 and f2 fields, and each one with different
sorting order. RANK sorts the relation on these fields and prepends the rank value to each
tuple. Otherwise, the RANK operator uses each field (or set of fields) to sort the relation. The
rank of atupleisone plusthe number of different rank values preceding it. If two or more
tuples tie on the sorting field values, they will receive the same rank.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 78

Pig Latin Basics

Same example as previous, but DENSE. In this case there are no gapsin ranking values.

6.18 SAMPLE

Selects arandom sample of data based on the specified sample size.

6.18.1 Syntax

SAMPLE dias size;

6.18.2 Terms
dias The name of arelation.
size Sample size, either
e aconstant, range 0 to 1 (for example, enter 0.1
for 10%)

e ascalar used in an expression

Note: The expression can consist of constants or
scalars; it cannot contain any columns from the input
relation.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 79

Pig Latin Basics

6.18.3 Usage

Use the SAMPLE operator to select arandom data sample with the stated sample size.
SAMPLE is aprobabalistic operator; there is no guarantee that the exact same number of
tuples will be returned for a particular sample size each time the operator is used.

6.18.4 Example

In this example relation X will contain 1% of the datain relation A.

In this example, a scalar expression is used (it will sample approximately 1000 records from
the input).

6.19 SPLIT

Partitions a relation into two or more relations.
6.19.1 Syntax

SPLIT diasINTO dlias |F expression, adias |F expression [, dlias IF expression ...] [, alias OTHERWISE];

6.19.2 Terms

dias The name of arelation.

INTO Required keyword.

IF Required keyword.

expression An expression.

OTHERWISE Optional keyword. Designates a default relation.
6.19.3 Usage

Use the SPLIT operator to partition the contents of arelation into two or more rel ations based
on some expression. Depending on the conditions stated in the expression:

Page 80

Pig Latin Basics

* A tuple may be assigned to more than one relation.
* A tuple may not be assigned to any relation.

6.19.4 Example

In thisexamplerelation A is split into three relations, X, Y, and Z.

6.19.5 Example

In thisexample, the SPLIT and FILTER statements are essentially equivalent. However,
because SPLIT isimplemented as "split the data stream and then apply filters' the SPLIT
statement is more expensive than the FILTER statement because Pig needs to filter and store
two data streams.

6.20 STORE

Stores or saves results to the file system.

6.20.1 Syntax

STORE dias INTO 'directory' [USING function];

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 81

6.20.2 Terms

dias

INTO

'directory"

USING

function

6.20.3 Usage

Pig Latin Basics

The name of arelation.
Required keyword.

The name of the storage directory, in quotes. If the
directory already exists, the STORE operation will
fail.

The output data files, named part-nnnnn, are written
to this directory.

Keyword. Use this clause to name the store function.

If the USING clause is omitted, the default store
function PigStorage is used.

The store function.

e You can use abuilt in function (see the Load/
Store Functions). PigStorage is the default
store function and does not need to be specified
(simply omit the USING clause).

e You can write your own store function if your
dataisin aformat that cannot be processed
by the built in functions (see User Defined
Functions).

Use the STORE operator to run (execute) Pig Latin statements and save (persist) resultsto
the file system. Use STORE for production scripts and batch mode processing.

Note: To debug scripts during development, you can use DUMP to check intermediate

results.

6.20.4 Examples

In this example datais stored using PigStorage and the asterisk character (*) asthefield
delimiter.

Page 82

func.html#load-store-functions
func.html#load-store-functions
udf.html
udf.html
test.html#dump

Pig Latin Basics

In this example, the CONCAT function is used to format the data before it is stored.

6.21 STREAM

Sends data to an external script or program.

6.21.1 Syntax

alias= STREAM dlias[, dias...] THROUGH { command’ | cmd_alias} [AS schemd] ;

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 83

Pig Latin Basics

6.21.2 Terms

dias The name of arelation.

THROUGH Keyword.

“command’ A command, including the arguments, enclosed in
back tics (where acommand is anything that can be
executed).

cmd_alias The name of acommand created using the DEFINE
operator (see DEFINE (UDFs, streaming) for
additional streaming examples).

AS Keyword.

schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

6.21.3 Usage

Use the STREAM operator to send data through an external script or program. Multiple
stream operators can appear in the same Pig script. The stream operators can be adjacent to
each other or have other operations in between.

When used with a command, a stream statement could look like this:

When used with acmd_alias, a stream statement could look like this, where mycmd is the
defined alias.

6.21.4 About Data Guarantees

Data guarantees are determined based on the position of the streaming operator in the Pig
script.

» Unordered data— No guarantee for the order in which the datais delivered to the
streaming application.

Page 84

Pig Latin Basics

» Grouped data— The data for the same grouped key is guaranteed to be provided to the
streaming application contiguously

Grouped and ordered data— The datafor the same grouped key is guaranteed to be
provided to the streaming application contiguously. Additionally, the data within the
group is guaranteed to be sorted by the provided secondary key.

In addition to position, data grouping and ordering can be determined by the data itself.
However, you need to know the property of the datato be able to take advantage of its
structure.

6.21.5 Example: Data Guarantees

In this example the data is unordered.

In this example the datais grouped.

In this example the data is grouped and ordered.

6.21.6 Example: Schemas
In this example a schemais specified as part of the STREAM statement.

Page 85

6.22 UNION

Computes the union of two or more relations.

6.22.1 Syntax

Pig Latin Basics

alias = UNION [ONSCHEMA] dlias, dias[, dias...] [PARALLEL n;

6.22.2 Terms
dias

ONSCHEMA

PARALLEL n

6.22.3 Usage

The name of arelation.

Use the ONSCHEMA clause to base the union on
named fields (rather than positional notation). All
inputs to the union must have a non-unknown (non-
null) schema.

Thisisonly applicable for Tez execution mode and
will not work with Mapreduce mode. Specifying
PARALLEL will introduce an extrareduce step

that will slightly degrade performance. The primary
purpose in this case is to control the number of output
files.

For more information, see Use the Parallel Features.

Use the UNION operator to merge the contents of two or more relations. The UNION

operator:

» Does not preserve the order of tuples. Both the input and output relations are interpreted

as unordered bags of tuples.

* Does not ensure (as databases do) that all tuples adhere to the same schema or that they
have the same number of fields. In atypical scenario, however, this should be the case;
therefore, it isthe user's responsibility to either (1) ensure that the tuplesin the input
relations have the same schema or (2) be able to process varying tuplesin the output

relation.

» Does not eliminate duplicate tuples.

Schema Behavior

The behavior of schemas for UNION (positional notation / data types) and UNION
ONSCHEMA (named fields / data types) is the same, except where noted.

Union on relations with two different sizes result in a null schema (union only):

Page 86

perf.html#parallel

Pig Latin Basics

Union columns with incompatible types results in afailure. (See Types Table for addition
and subtraction for incompatible types.)

Union columns of compatible type will produce an "escalate” type. The priority is:

* double> float > long > int > bytearray
» tuplelbag|map|chararray > bytearray

Union of different inner types results in an empty complex type:

The alias of thefirst relation is always taken as the alias of the unioned relation field.

6.22.4 Example

In this example the union of relation A and B is computed.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 87

Pig Latin Basics

6.22.5 Example

This example shows the use of ONSCHEMA..

7 UDF Statements

7.1 DEFINE (UDFs, streaming)

Assigns an aliasto a UDF or streaming command.

7.1.1 Syntax: UDF and streaming

DEFINE dias{function | ['command" [input] [output] [ship] [cache] [stderr]] };
7.1.2 Terms

dias The name for a UDF function or the name for a
streaming command (the cmd_alias for the STREAM
operator).

function For use with functions.
The name of a UDF function.

“command’ For use with streaming.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 88

input

output

ship

cache

Pig Latin Basics

A command, including the arguments, enclosed in
back tics (where acommand is anything that can be
executed).

The clauses (input, output, ship, cache, stderr) are
described below. Note the following:

e All clauses are optional.

* The clauses can be specified in any order (for
example, stderr can appear before input)

» Each clause can be specified at most once (for
example, multiple inputs are not allowed)

For use with streaming.

INPUT ({stdin | 'path’} [USING serializer] [, {stdin |
'path} [USING seridizer] ...])

Where:

e INPUT —Keyword.

e 'path'— A file path, enclosed in single quotes.
 USING - Keyword.

e seriadlizer — PigStreaming is the default serializer.

For use with streaming.

OUTPUT ({stdout | stderr | 'path’} [USING
deseridlizer] [, { stdout | stderr | 'path’} [USING
deseridizer] ...])

Where:

« OUTPUT —Keyword.

« 'path'— A file path, enclosed in single quotes.

* USING - Keyword.

o deserializer — PigStreaming is the default
deserializer.

For use with streaming.

SHIP('path' [, 'path’ ...])

Where:

e SHIP-Keyword.

e 'path'— A file path, enclosed in single quotes.

For use with streaming.

CACHE('dfs_path#dfs file' [, 'dfs_path#dfs file' ...])

Where:

e CACHE -Keyword.

Page 89

Pig Latin Basics

« 'dfs path#dfs file' — A file path/file name on the
distributed file system, enclosed in single quotes.
Example: '/mydir/mydata.txt#mydata.txt’

stderr For use with streaming.
STDERR('/dir") or STDERR('/dir' LIMIT n)
Where:

« '/dir'isthelog directory, enclosed in single
quotes.

e (optional) LIMIT nisthe error threshold where
nisaninteger value. If not specified, the default
error threshold is unlimited.

7.1.3 Usage

Use the DEFINE statement to assign a name (alias) to a UDF function or to a streaming
command.

Use DEFINE to specify a UDF function when:

» Thefunction has along package name that you don't want to include in a script,
especialy if you call the function several timesin that script.

» The constructor for the function takes string parameters. If you need to use different
constructor parameters for different callsto the function you will need to create multiple
defines — one for each parameter set.

Use DEFINE to specify a streaming command when:

» The streaming command specification is complex.
* The streaming command specification requires additional parameters (input, output, and
SO 0n).

7.1.3.1 About Input and Output for Streaming

Serialization is needed to convert data from tuplesto aformat that can be processed by the
streaming application. Deserialization is needed to convert the output from the streaming
application back into tuples. PigStreaming is the default serialization/deserialization function.

Streaming uses the same default format as PigStorage to serialize/deserialize the data. If you
want to explicitly specify aformat, you can do it as show below (see more examplesin the
Examples: Input/Output section).

DEFI NE CMD “perl PigStreaning.pl - nameMap® input(stdin using PigStreanm ng(',"'))
out put (stdout using PigStreanming(','));

A = LOAD 'file';

B = STREAM B THROUGH CMD;

Page 90

Pig Latin Basics

If you need an alternative format, you will need to create a custom serializer/deserializer by
implementing the following interfaces.

7.1.3.2 About Ship

Use the ship option to send streaming binary and supporting files, if any, from the client node
to the compute nodes. Pig does not automatically ship dependencies; it is your responsibility
to explicitly specify all the dependencies and to make sure that the software the processing
relies on (for instance, perl or python) isinstalled on the cluster. Supporting files are shipped
to the task's current working directory and only relative paths should be specified. Any pre-
installed binaries should be specified in the PATH.

Only files, not directories, can be specified with the ship option. One way to work around
thislimitation isto tar al the dependenciesinto atar file that accurately reflects the
structure needed on the compute nodes, then have awrapper for your script that un-tars the
dependencies prior to execution.

Note that the ship option has two components: the source specification, provided in the
ship() clause, isthe view of your machine; the command specification is the view of the
actual cluster. The only guaranteeis that the shipped files are available in the current working
directory of the launched job and that your current working directory is aso on the PATH
environment variable.

Page 91

Pig Latin Basics

Shipping files to relative paths or absolute paths is not supported since you might not have
permission to read/write/execute from arbitrary paths on the clusters.

Note the following:

» Itissafeonly to ship filesto be executed from the current working directory on the task
on the cluster.

OP = stream | P through 'script';
or
DEFINE CVMD 'script' ship('/albl/script');
OP = stream | P t hrough CVD;
» Shipping filesto relative paths or absolute paths is undefined and mostly will fail since
you may not have permissions to read/write/execute from arbitraty paths on the actual

clusters.

7.1.3.3 About Cache

The ship option works with binaries, jars, and small datasets. However, loading larger
datasets at run time for every execution can severely impact performance. Instead, use the
cache option to access large files already moved to and available on the compute nodes. Only
files, not directories, can be specified with the cache option.

7.1.3.4 About Auto-Ship

If the ship and cache options are not specified, Pig will attempt to auto-ship the binary in the

following way:

» If thefirst word on the streaming command is perl or python, Pig assumes that the binary
isthe first non-quoted string it encounters that does not start with dash.

» Otherwise, Pig will attempt to ship the first string from the command line aslong as it
does not comefrom/ bi n, /usr/bin, /usr/local/bin.Pigwill determinethis
by scanning the path if an absolute path is provided or by executing whi ch. The paths
can be made configurable using the set stream.skippath option (you can use multiple set
commands to specify more than one path to skip).

If you don't supply a DEFINE for a given streaming command, then auto-shipping is turned
off.

Note the following:

» |If Pig determines that it needs to auto-ship an absolute path it will not ship it at al since
there is no way to ship filesto the necessary location (lack of permissions and so on).

OP = stream | P through “/al/b/c/script”;
or

Page 92

cmds.html#set

Pig Latin Basics

Pig will not auto-ship filesin the following system directories (thisis determined by
executing ‘'which <file>' command).

To auto-ship, the file in question should be present in the PATH. So if thefileisin the
current working directory then the current working directory should be in the PATH.

7.1.4 Examples: Input/Output

In this example PigStreaming is the default serialization/deserialization function. The tuples
from relation A are converted to tab-delimited lines that are passed to the script.

In this example PigStreaming is used as the serialization/deserialization function, but a
commais used as the delimiter.

In this example user defined serialization/deserialization functions are used with the script.

7.1.5 Examples: Ship/Cache

In this example ship is used to send the script to the cluster compute nodes.

In this example cache is used to specify afile located on the cluster compute nodes.

Pig Latin Basics

7.1.6 Example: DEFINE with STREAM

In this example a command is defined for use with the STREAM operator.

7.1.7 Examples: Logging

In this example the streaming stderr is stored in the _logs/<dir> directory of the job's output
directory. Because the job can have multiple streaming applications associated with it, you
need to ensure that different directory names are used to avoid conflicts. Pig stores up to 100
tasks per streaming job.

7.1.8 Examples: DEFINE a function
In this example afunction is defined for use with the FOREACH ... GENERATE operator.

7.2 REGISTER (a jar/script)
Registers a JAR file so that the UDFs in the file can be used.

7.2.1 Syntax

REGISTER path;

7.2.2 Terms

path The path to the JAR file (the full location URI is
required). Do not place the name in quotes.

Page 94

Pig Latin Basics

7.2.3 Usage
Pig Scripts

Use the REGISTER statement inside a Pig script to specify a JAR file or a Python/JavaScript
module. Pig supports JAR files and modules stored in local file systems as well as remote,
distributed file systems such as HDFS and Amazon S3 (see Pig Scripts).

Additionally, JAR files stored in local file systems can be specified as a glob pattern using
“** Pig will search for matching jarsin the local file system, either the relative path (relative
to your working directory) or the absolute path. Pig will pick up all JARs that match the glob.

Command Line

Y ou can register additional files (to use with your Pig script) via PIG_OPTS environment
variable using the -Dpig.additional .jars.uris option. For more information see User Defined
Functions.

7.2.4 Examples

In this example REGISTER states that the JavaScript module, myfunc.js, islocated in the /
src directory.

/src $ java -jar pig.jar —
REG STER /src/ nyfunc.js;

A = LOAD 'students';
B = FOREACH A GENERATE nyf unc. MyEval Func($0) ;

In this example additional JAR files are registered via PIG_OPTS environment variable.

export Pl G OPTS="-Dpig.additional.jars.uris=nmy.jar,your.jar"

In this example a JAR file stored in HDFS and alocal JAR file are registered.

export Pl G OPTS="-Dpig.additional.jars.uris=hdfs://nn. mydomai n. com 9020/ nyj ar s/
ny.jar,file:///hone/root/pig/your.jar"

Note, the legacy property pig.additional.jars which use colon as separator is still supported.
But we recommend to use pig.additional.jars.uris since colon is also used in URL scheme,
and thus we cannot use full scheme in the list. We will deprecate pig.additional.jar in future
releases.

This example shows how to specify a glob pattern using either arelative path or an absolute
path.

regi ster /hones/user/pi g/ nyfunc*.jar

Page 95

start.html#pig-scripts
udf.html
udf.html

Pig Latin Basics

regi ster count*.jar
register jars/*.jar

7.3 REGISTER (an artifact)

Instead of figuring out the dependencies manually, downloading them and registering each
jar using the above register command, you can specify the artifact's coordinates and expect
pig to automatically fetch the required dependencies, download and register them.

7.3.1 Syntax

To download an Artifact (and its dependencies), you need to specify the artifact's group,
module and version following the syntax shown below. This command will download the Jar
specified and al its dependencies and load it into the classpath.

REGISTER ivy://group:modul e:version?querystring

7.3.2 Terms
group Which module group the module comes from.
Trandates directly to aMaven groupld or an vy
Organization.
module The name of the module to load. Trandlated directly
to aMaven artifactld or an lvy artifact.
version The version of the module to use. Y ou can specify
aspecific version or use"+" or "*" to use the |atest
version.
querystring Thiswill contain "&" separated key-value pairsto
help us exclude al or specific dependencies etc.
7.3.3 Usage

The Register artifact command is an extension to the above register command used to
register ajar. In addition to registering ajar from alocal system or from hdfs, you can now
specify the coordinates of the artifact and pig will download the artifact (and its dependencies
if needed) from the configured repository.

7.3.3.1 Parameters Supported in the Query String

« Transitive

Transitive helps specifying if you need the dependencies along with the registering jar.
By setting transitive to false in the querystring we can tell pig to register only the artifact

Page 96

Pig Latin Basics

without its dependencies. Thiswill download only the artifact specified and will not
download the dependencies of the jar. The default value of transitive is true.

Syntax

REGISTER ivy://org:module:version?ransitive=false
Exclude
While registering an artifact if you wish to exclude some dependencies you can specify
them using the exclude key. Suppose you want to use a specific version of a dependent
jar which doesn't match the version of the jar when automatically fetched, then you could

exclude such dependencies by specifying a comma separated list of dependencies and
register the dependent jar separately.

Syntax
REGISTER ivy://org:module:version?exclude=org:mod,org:mod,...
Classifier
Some maven dependencies need classifiersin order to be able to resolve. Y ou can specify
them using aclassifier key.
Syntax
REGISTER ivy://org:module:version?classifier=value

7.3.3.2 Other properties

An optional pig property, pig.artifacts.download.location, can be used to configure the
location where the artifacts should be downloaded. By default, they will be downloaded
to ~/.groovy/grapes

This command can be used or can replace the register jar command wherever used
including macros.

Group/Organization and Version are optional fields. In such cases you can leave them
blank.

The repositories can be configured using an ivysettings file. Pig will search for an
ivysettings.xml file in the following locationsin order. PIG_CONF _DIR > PIG_ HOME
> Classpath

7.3.4 Examples

Registering an Artifact and all its dependencies.

- Both are the sane

REG STER i vy://org. apache. avro:avro: 1.5.1

Page 97

Pig Latin Basics

Registering an artifact without getting its dependencies.

Registering the latest artifact.

Registering an artifact by excluding specific dependencies.

Specifying a classifier

Registering an artifact without a group or organization. Just skip them.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 98

	Table of contents
	1 Conventions
	2 Reserved Keywords
	3 Case Sensitivity
	4 Data Types and More
	4.1 Identifiers
	4.2 Relations, Bags, Tuples, Fields
	4.2.1 Referencing Relations
	4.2.2 Referencing Fields
	4.2.3 Referencing Fields that are Complex Data Types

	4.3 Data Types
	4.3.1 Simple and Complex
	4.3.2 Tuple
	4.3.2.1 Syntax
	4.3.2.2 Terms
	4.3.2.3 Usage
	4.3.2.4 Example

	4.3.3 Bag
	4.3.3.1 Syntax: Inner bag
	4.3.3.2 Terms
	4.3.3.3 Usage
	4.3.3.4 Example: Outer Bag
	4.3.3.5 Example: Inner Bag

	4.3.4 Map
	4.3.4.1 Syntax (<> denotes optional)
	4.3.4.2 Terms
	4.3.4.3 Usage
	4.3.4.4 Example

	4.4 Nulls and Pig Latin
	4.4.1 Nulls, Operators, and Functions
	4.4.2 Nulls and Constants
	4.4.3 Operations That Produce Nulls
	4.4.3.1 Example: Accessing a field that does not exist in a tuple

	4.4.4 Nulls and Load Functions
	4.4.5 Nulls and GROUP/COGROUP Operators
	4.4.6 Nulls and JOIN Operator
	4.4.7 Nulls and FLATTEN Operator

	4.5 Constants
	4.6 Expressions
	4.6.1 Field Expressions
	4.6.2 Star Expressions
	4.6.3 Project-Range Expressions
	4.6.4 Boolean Expressions
	4.6.5 Tuple Expressions
	4.6.6 General Expressions

	4.7 Schemas
	4.7.1 Schemas with LOAD and STREAM
	4.7.2 Schemas with FOREACH
	4.7.3 Schemas for Simple Data Types
	4.7.3.1 Syntax
	4.7.3.2 Terms
	4.7.3.3 Examples

	4.7.4 Schemas for Complex Data Types
	4.7.5 Tuple Schemas
	4.7.5.1 Syntax
	4.7.5.2 Terms
	4.7.5.3 Examples

	4.7.6 Bag Schemas
	4.7.6.1 Syntax
	4.7.6.2 Terms
	4.7.6.3 Examples

	4.7.7 Map Schemas
	4.7.7.1 Syntax (<> demotes optional)
	4.7.7.2 Terms
	4.7.7.3 Examples

	4.7.8 Schemas for Multiple Types
	4.7.8.1 Example
	4.7.8.2 Previous Relation Shortcut

	5 Arithmetic Operators and More
	5.1 Arithmetic Operators
	5.1.1 Description
	5.1.1.1 Examples
	5.1.1.2 Types Table: addition (+) and subtraction (-) operators
	5.1.1.3 Types Table: multiplication (*) and division (/) operators
	5.1.1.4 Types Table: modulo (%) operator

	5.2 Boolean Operators
	5.2.1 Description
	5.2.1.1 Example

	5.3 Cast Operators
	5.3.1 Description
	5.3.1.1 Syntax
	5.3.1.2 Terms
	5.3.1.3 Usage

	5.3.2 Examples
	5.3.3 Casting Relations to Scalars

	5.4 Comparison Operators
	5.4.1 Description
	5.4.2 Examples
	5.4.3 Types Table: equal (==) operator
	5.4.4 Types Table: not equal (!=) operator
	5.4.5 Types Table: matches operator

	5.5 Type Construction Operators
	5.5.1 Description
	5.5.2 Examples

	5.6 Dereference Operators
	5.6.1 Description
	5.6.2 Examples

	5.7 Disambiguate Operator
	5.8 Flatten Operator
	5.9 Null Operators
	5.9.1 Description
	5.9.2 Examples
	5.9.3 Types Table

	5.10 Sign Operators
	5.10.1 Description
	5.10.2 Examples
	5.10.3 Types Table: negative (-) operator

	6 Relational Operators
	6.1 ASSERT
	6.1.1 Syntax
	6.1.2 Terms
	6.1.3 Usage
	6.1.4 Examples

	6.2 COGROUP
	6.3 CROSS
	6.3.1 Syntax
	6.3.2 Terms
	6.3.3 Usage
	6.3.4 Example

	6.4 CUBE
	6.4.1 Cube operation
	6.4.2 Rollup operation
	6.4.3 Syntax
	6.4.4 Terms
	6.4.5 Example
	6.4.6 Basic usage of CUBE operation
	6.4.7 Output schema
	6.4.8 Basic usage of ROLLUP operation
	6.4.9 Output schema
	6.4.10 Basic usage of CUBE and ROLLUP operation combined
	6.4.11 Output schema
	6.4.12 Handling null values in dimensions

	6.5 DEFINE
	6.6 DISTINCT
	6.6.1 Syntax
	6.6.2 Terms
	6.6.3 Usage
	6.6.4 Example

	6.7 FILTER
	6.7.1 Syntax
	6.7.2 Terms
	6.7.3 Usage
	6.7.4 Examples

	6.8 FOREACH
	6.8.1 Syntax
	6.8.2 Terms
	6.8.3 Usage
	6.8.4 Example: Projection
	6.8.5 Example: Nested Projection
	6.8.6 Example: Schema
	6.8.7 Example: Applying Functions
	6.8.8 Example: Flatten
	6.8.9 Example: Nested Block

	6.9 GROUP
	6.9.1 Syntax
	6.9.2 Terms
	6.9.3 Usage
	6.9.4 Example
	6.9.5 Example
	6.9.6 Example
	6.9.7 Example
	6.9.8 Example: PARTITION BY

	6.10 IMPORT
	6.11 JOIN (inner)
	6.11.1 Syntax
	6.11.2 Terms
	6.11.3 Usage
	6.11.4 Example

	6.12 JOIN (outer)
	6.12.1 Syntax
	6.12.2 Terms
	6.12.3 Usage
	6.12.4 Examples

	6.13 LIMIT
	6.13.1 Syntax
	6.13.2 Terms
	6.13.3 Usage
	6.13.4 Examples

	6.14 LOAD
	6.14.1 Syntax
	6.14.2 Terms
	6.14.3 Usage
	6.14.4 Examples

	6.15 NATIVE
	6.15.1 Syntax
	6.15.2 Terms
	6.15.3 Usage
	6.15.4 Example

	6.16 ORDER BY
	6.16.1 Syntax
	6.16.2 Terms
	6.16.3 Usage
	6.16.4 Examples

	6.17 RANK
	6.17.1 Syntax
	6.17.2 Terms
	6.17.3 Usage
	6.17.4 Examples

	6.18 SAMPLE
	6.18.1 Syntax
	6.18.2 Terms
	6.18.3 Usage
	6.18.4 Example

	6.19 SPLIT
	6.19.1 Syntax
	6.19.2 Terms
	6.19.3 Usage
	6.19.4 Example
	6.19.5 Example

	6.20 STORE
	6.20.1 Syntax
	6.20.2 Terms
	6.20.3 Usage
	6.20.4 Examples

	6.21 STREAM
	6.21.1 Syntax
	6.21.2 Terms
	6.21.3 Usage
	6.21.4 About Data Guarantees
	6.21.5 Example: Data Guarantees
	6.21.6 Example: Schemas

	6.22 UNION
	6.22.1 Syntax
	6.22.2 Terms
	6.22.3 Usage
	6.22.4 Example
	6.22.5 Example

	7 UDF Statements
	7.1 DEFINE (UDFs, streaming)
	7.1.1 Syntax: UDF and streaming
	7.1.2 Terms
	7.1.3 Usage
	7.1.3.1 About Input and Output for Streaming
	7.1.3.2 About Ship
	7.1.3.3 About Cache
	7.1.3.4 About Auto-Ship

	7.1.4 Examples: Input/Output
	7.1.5 Examples: Ship/Cache
	7.1.6 Example: DEFINE with STREAM
	7.1.7 Examples: Logging
	7.1.8 Examples: DEFINE a function

	7.2 REGISTER (a jar/script)
	7.2.1 Syntax
	7.2.2 Terms
	7.2.3 Usage
	7.2.4 Examples

	7.3 REGISTER (an artifact)
	7.3.1 Syntax
	7.3.2 Terms
	7.3.3 Usage
	7.3.3.1 Parameters Supported in the Query String
	7.3.3.2 Other properties

	7.3.4 Examples

