
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Basics

Table of contents

1 Conventions........................................................................................................................ 2

2 Reserved Keywords............................................................................................................2

3 Case Sensitivity.................................................................................................................. 3

4 Data Types and More........................................................................................................ 4

5 Arithmetic Operators and More....................................................................................... 27

6 Relational Operators.........................................................................................................46

7 UDF Statements............................................................................................................... 88



Pig Latin Basics

Page 2Copyright © 2007 The Apache Software Foundation. All rights reserved.

1 Conventions

Conventions for the syntax and code examples in the Pig Latin Reference Manual are
described here.

Convention Description Example

( ) Parentheses enclose one or more
items.

Parentheses are also used to
indicate the tuple data type.

Multiple items:

(1, abc, (2,4,6) )

[ ] Straight brackets enclose one or
more optional items.

Straight brackets are also used to
indicate the map data type. In this
case <> is used to indicate optional
items.

Optional items:

[INNER | OUTER]

{ } Curly brackets enclose two or
more items, one of which is
required.

Curly brackets also used to
indicate the bag data type. In
this case <> is used to indicate
required items.

Two items, one required:

{ block | nested_block }

… Horizontal ellipsis points indicate
that you can repeat a portion of the
code.

Pig Latin syntax statement:

cat path [path …]

UPPERCASE

lowercase

In general, uppercase type
indicates elements the system
supplies.

In general, lowercase type
indicates elements that you supply.

(These conventions are not strictly
adherered to in all examples.)

See Case Sensitivity

Pig Latin statement:

a = LOAD 'data' AS (f1:int);

• LOAD, AS - Pig keywords
• a, f1 - aliases you supply
• 'data' - data source you supply

2 Reserved Keywords

Pig reserved keywords are listed here.

-- A assert, and, any, all, arrange, as, asc, AVG



Pig Latin Basics

Page 3Copyright © 2007 The Apache Software Foundation. All rights reserved.

-- B bag, BinStorage, by, bytearray, BIGINTEGER,
BIGDECIMAL

-- C cache, CASE, cat, cd, chararray, cogroup, CONCAT,
copyFromLocal, copyToLocal, COUNT, cp, cross

-- D datetime, %declare, %default, define, dense, desc,
describe, DIFF, distinct, double, du, dump

-- E e, E, eval, exec, explain

-- F f, F, filter, flatten, float, foreach, full

-- G generate, group

-- H help

-- I if, illustrate, import, inner, input, int, into, is

-- J join

-- K kill

-- L l, L, left, limit, load, long, ls

-- M map, matches, MAX, MIN, mkdir, mv

-- N not, null

-- O onschema, or, order, outer, output

-- P parallel, pig, PigDump, PigStorage, pwd

-- Q quit

-- R register, returns, right, rm, rmf, rollup, run

-- S sample, set, ship, SIZE, split, stderr, stdin, stdout,
store, stream, SUM

-- T TextLoader, TOKENIZE, through, tuple

-- U union, using

-- V, W, X, Y, Z void

3 Case Sensitivity

The names (aliases) of relations and fields are case sensitive. The names of Pig Latin
functions are case sensitive. The names of parameters (see Parameter Substitution) and all
other Pig Latin keywords (see Reserved Keywords) are case insensitive.

cont.html#Parameter-Sub


Pig Latin Basics

Page 4Copyright © 2007 The Apache Software Foundation. All rights reserved.

In the example below, note the following:

• The names (aliases) of relations A, B, and C are case sensitive.
• The names (aliases) of fields f1, f2, and f3 are case sensitive.
• Function names PigStorage and COUNT are case sensitive.
• Keywords LOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, and DUMP are

case insensitive. They can also be written as load, using, as, group, by, etc.
• In the FOREACH statement, the field in relation B is referred to by positional notation

($0).

grunt> A = LOAD 'data' USING PigStorage() AS (f1:int, f2:int, f3:int);
grunt> B = GROUP A BY f1;
grunt> C = FOREACH B GENERATE COUNT ($0);
grunt> DUMP C;

4 Data Types and More

4.1 Identifiers

Identifiers include the names of relations (aliases), fields, variables, and so on. In Pig,
identifiers start with a letter and can be followed by any number of letters, digits, or
underscores.

Valid identifiers:

A
A123
abc_123_BeX_

Invalid identifiers:

_A123
abc_$
A!B

4.2 Relations, Bags, Tuples, Fields

Pig Latin statements work with relations. A relation can be defined as follows:

• A relation is a bag (more specifically, an outer bag).
• A bag is a collection of tuples.
• A tuple is an ordered set of fields.
• A field is a piece of data.

start.html#pl-statements


Pig Latin Basics

Page 5Copyright © 2007 The Apache Software Foundation. All rights reserved.

A Pig relation is a bag of tuples. A Pig relation is similar to a table in a relational database,
where the tuples in the bag correspond to the rows in a table. Unlike a relational table,
however, Pig relations don't require that every tuple contain the same number of fields or that
the fields in the same position (column) have the same type.

Also note that relations are unordered which means there is no guarantee that tuples are
processed in any particular order. Furthermore, processing may be parallelized in which case
tuples are not processed according to any total ordering.

4.2.1 Referencing Relations

Relations are referred to by name (or alias). Names are assigned by you as part of the Pig
Latin statement. In this example the name (alias) of the relation is A.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);
DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Bill,20,3.9F)
(Joe,18,3.8F)

You an assign an alias to another alias. The new alias can be used in the place of the original
alias to refer the original relation.

  A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);
  B = A;
  DUMP B;
  

4.2.2 Referencing Fields

Fields are referred to by positional notation or by name (alias).

• Positional notation is generated by the system. Positional notation is indicated with the
dollar sign ($) and begins with zero (0); for example, $0, $1, $2.

• Names are assigned by you using schemas (or, in the case of the GROUP operator and
some functions, by the system). You can use any name that is not a Pig keyword (see
Identifiers for valid name examples).

Given relation A above, the three fields are separated out in this table.

First Field Second Field Third Field

Data type chararray int float

Positional notation
(generated by system)

$0 $1 $2



Pig Latin Basics

Page 6Copyright © 2007 The Apache Software Foundation. All rights reserved.

Possible name (assigned
by you using a schema)

name age gpa

Field value (for the first
tuple)

John 18 4.0

As shown in this example when you assign names to fields (using the AS schema clause) you
can still refer to the fields using positional notation. However, for debugging purposes and
ease of comprehension, it is better to use field names.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);
X = FOREACH A GENERATE name,$2;
DUMP X;
(John,4.0F)
(Mary,3.8F)
(Bill,3.9F)
(Joe,3.8F)

In this example an error is generated because the requested column ($3) is outside of the
declared schema (positional notation begins with $0). Note that the error is caught before the
statements are executed.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);
B = FOREACH A GENERATE $3;
DUMP B;
2009-01-21 23:03:46,715 [main] ERROR org.apache.pig.tools.grunt.GruntParser -
 java.io.IOException: 
Out of bound access. Trying to access non-existent  : 3. Schema {f1: bytearray,f2:
 bytearray,f3: bytearray} has 3 column(s). 
etc ...

4.2.3 Referencing Fields that are Complex Data Types

As noted, the fields in a tuple can be any data type, including the complex data types: bags,
tuples, and maps.

• Use the schemas for complex data types to name fields that are complex data types.
• Use the dereference operators to reference and work with fields that are complex data

types.

In this example the data file contains tuples. A schema for complex data types (in this case,
tuples) is used to load the data. Then, dereference operators (the dot in t1.t1a and t2.$0) are
used to access the fields in the tuples. Note that when you assign names to fields you can still
refer to these fields using positional notation.

cat data;
(3,8,9) (4,5,6)
(1,4,7) (3,7,5)



Pig Latin Basics

Page 7Copyright © 2007 The Apache Software Foundation. All rights reserved.

(2,5,8) (9,5,8)

A = LOAD 'data' AS (t1:tuple(t1a:int, t1b:int,t1c:int),t2:tuple(t2a:int,t2b:int,t2c:int));

DUMP A;
((3,8,9),(4,5,6))
((1,4,7),(3,7,5))
((2,5,8),(9,5,8))

X = FOREACH A GENERATE t1.t1a,t2.$0;

DUMP X;
(3,4)
(1,3)
(2,9)

4.3 Data Types

4.3.1 Simple and Complex

Simple Types Description Example

int Signed 32-bit integer 10

long Signed 64-bit integer Data:     10L or 10l

Display: 10L

float 32-bit floating point Data:     10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data:     10.5 or 10.5e2 or 10.5E2

Display: 10.5 or 1050.0

chararray Character array (string) in Unicode
UTF-8 format

hello world

bytearray Byte array (blob)

boolean boolean true/false (case insensitive)

datetime datetime 1970-01-01T00:00:00.000+00:00

biginteger Java BigInteger 200000000000

bigdecimal Java BigDecimal 33.456783321323441233442

Complex Types

tuple An ordered set of fields. (19,2)



Pig Latin Basics

Page 8Copyright © 2007 The Apache Software Foundation. All rights reserved.

bag An collection of tuples. {(19,2), (18,1)}

map A set of key value pairs. [open#apache]

Note the following general observations about data types:

• Use schemas to assign types to fields.  If you don't assign types, fields default to type
bytearray and implicit conversions are applied to the data depending on the context in
which that data is used. For example, in relation B, f1 is converted to integer because 5 is
integer. In relation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

A = LOAD 'data' AS (f1,f2,f3);
B = FOREACH A GENERATE f1 + 5;
C = FOREACH A generate f1 + f2;

• If a schema is defined as part of a load statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

• If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE (int)name;

This will cause an error …

• If Pig cannot resolve incompatible types through implicit casts, an error will occur.
For example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE name + gpa;

This will cause an error …

All data types have corresponding schemas.

4.3.2 Tuple

A tuple is an ordered set of fields.



Pig Latin Basics

Page 9Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.3.2.1 Syntax

( field [, field …] )  

4.3.2.2 Terms

(  ) A tuple is enclosed in parentheses ( ).

field A piece of data. A field can be any data type
(including tuple and bag).

4.3.2.3 Usage

You can think of a tuple as a row with one or more fields, where each field can be any
data type and any field may or may not have data. If a field has no data, then the following
happens:

• In a load statement, the loader will inject null into the tuple. The actual value that is
substituted for null is loader specific; for example, PigStorage substitutes an empty field
for null.

• In a non-load statement, if a requested field is missing from a tuple, Pig will inject null.

Also see tuple schemas.

4.3.2.4 Example

In this example the tuple contains three fields.

(John,18,4.0F)

4.3.3 Bag

A bag is a collection of tuples.

4.3.3.1 Syntax: Inner bag

{ tuple [, tuple …] }

4.3.3.2 Terms

{  } An inner bag is enclosed in curly brackets { }.

tuple A tuple.

4.3.3.3 Usage

Note the following about bags:



Pig Latin Basics

Page 10Copyright © 2007 The Apache Software Foundation. All rights reserved.

• A bag can have duplicate tuples.
• A bag can have tuples with differing numbers of fields. However, if Pig tries to access a

field that does not exist, a null value is substituted.
• A bag can have tuples with fields that have different data types. However, for Pig to

effectively process bags, the schemas of the tuples within those bags should be the same.
For example, if half of the tuples include chararray fields and while the other half include
float fields, only half of the tuples will participate in any kind of computation because the
chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.

Also see bag schemas.

4.3.3.4 Example: Outer Bag

In this example A is a relation or bag of tuples. You can think of this bag as an outer bag.

A = LOAD 'data' as (f1:int, f2:int, f3:int);
DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)

4.3.3.5 Example: Inner Bag

Now, suppose we group relation A by the first field to form relation X.

In this example X is a relation or bag of tuples. The tuples in relation X have two fields. The
first field is type int. The second field is type bag; you can think of this bag as an inner bag.

X = GROUP A BY f1;
DUMP X;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})
(8,{(8,3,4)})

4.3.4 Map

A map is a set of key/value pairs.

4.3.4.1 Syntax (<> denotes optional)

[ key#value <, key#value …> ]



Pig Latin Basics

Page 11Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.3.4.2 Terms

[ ] Maps are enclosed in straight brackets [ ].

# Key value pairs are separated by the pound sign #.

key Must be chararray data type. Must be a unique value.

value Any data type (the defaults to bytearray).

4.3.4.3 Usage

Key values within a relation must be unique.

Also see map schemas.

4.3.4.4 Example

In this example the map includes two key value pairs.

[name#John,phone#5551212]

4.4 Nulls and Pig Latin

In Pig Latin, nulls are implemented using the SQL definition of null as unknown or non-
existent. Nulls can occur naturally in data or can be the result of an operation.

4.4.1 Nulls, Operators, and Functions

Pig Latin operators and functions interact with nulls as shown in this table.

Operator Interaction

Comparison operators:

==, !=

>, <

>=, <=

If either subexpression is null, the result is null.

Comparison operator:

matches

If either the string being matched against or the string
defining the match is null, the result is null.

Arithmetic operators:

 + , -, *, /

% modulo

? : bincond

CASE : case

If either subexpression is null, the resulting
expression is null.



Pig Latin Basics

Page 12Copyright © 2007 The Apache Software Foundation. All rights reserved.

Null operator:

is null

If the tested value is null, returns true; otherwise,
returns false (see Null Operators).

Null operator:

is not null

If the tested value is not null, returns true; otherwise,
returns false (see Null Operators).

Dereference operators:

tuple (.) or map (#)

If the de-referenced tuple or map is null, returns null.

Operators:

COGROUP, GROUP, JOIN

These operators handle nulls differently (see
examples below).

Function:

COUNT_STAR

This function counts all values, including nulls.

Cast operator Casting a null from one type to another type results in
a null.

Functions:

AVG, MIN, MAX, SUM, COUNT

These functions ignore nulls.

Function:

CONCAT

If either subexpression is null, the resulting
expression is null.

Function:

SIZE

If the tested object is null, returns null.

For Boolean subexpressions, note the results when nulls are used with these operators:

• FILTER operator – If a filter expression results in null value, the filter does not pass them
through (if X is null, !X is also null, and the filter will reject both).

• Bincond operator – If a Boolean subexpression results in null value, the resulting
expression is null (see the interactions above for Arithmetic operators)

4.4.2 Nulls and Constants

Nulls can be used as constant expressions in place of expressions of any type.

In this example a and null are projected.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a, null;

In this example of an outer join, if the join key is missing from a table it is replaced by null.

A = LOAD 'student' AS (name: chararray, age: int, gpa: float);



Pig Latin Basics

Page 13Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = LOAD 'votertab10k' AS (name: chararray, age: int, registration: chararray, donation:
 float);
C = COGROUP A BY name, B BY name;
D = FOREACH C GENERATE FLATTEN((IsEmpty(A) ? null : A)), FLATTEN((IsEmpty(B) ? null : B));

Like any other expression, null constants can be implicitly or explicitly cast.

In this example both a and null will be implicitly cast to double.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a + null;

In this example  both a and null will be cast to int, a implicitly, and null explicitly.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a + (int)null;

4.4.3 Operations That Produce Nulls

As noted, nulls can be the result of an operation. These operations can produce null values:

• Division by zero
• Returns from user defined functions (UDFs)
• Dereferencing a field that does not exist.
• Dereferencing a key that does not exist in a map. For example, given a map, info,

containing [name#john, phone#5551212] if a user tries to use info#address a null is
returned.

• Accessing a field that does not exist in a tuple.

4.4.3.1 Example: Accessing a field that does not exist in a tuple

In this example nulls are injected if fields do not have data.

cat data;
    2   3
4   
7   8   9

A = LOAD 'data' AS (f1:int,f2:int,f3:int)

DUMP A;
(,2,3)
(4,,)
(7,8,9)

B = FOREACH A GENERATE f1,f2;

DUMP B;
(,2)
(4,)



Pig Latin Basics

Page 14Copyright © 2007 The Apache Software Foundation. All rights reserved.

(7,8)

4.4.4 Nulls and Load Functions

As noted, nulls can occur naturally in the data. If nulls are part of the data, it is the
responsibility of the load function to handle them correctly. Keep in mind that what is
considered a null value is loader-specific; however, the load function should always
communicate null values to Pig by producing Java nulls.

The Pig Latin load functions (for example, PigStorage and TextLoader) produce null values
wherever data is missing. For example, empty strings (chararrays) are not loaded; instead,
they are replaced by nulls.

PigStorage is the default load function for the LOAD operator. In this example the is not null
operator is used to filter names with null values.

A = LOAD 'student' AS (name, age, gpa); 
B = FILTER A BY name is not null;

4.4.5 Nulls and GROUP/COGROUP Operators

When using the GROUP operator with a single relation, records with a null group key are
grouped together.

A = load 'student' as (name:chararray, age:int, gpa:float);
dump A;
(joe,18,2.5)
(sam,,3.0)
(bob,,3.5)

X = group A by age;
dump X;
(18,{(joe,18,2.5)})
(,{(sam,,3.0),(bob,,3.5)})
   

When using the GROUP (COGROUP) operator with multiple relations, records with a null
group key from different relations are considered different and are grouped separately. In the
example below note that there are two tuples in the output corresponding to the null group
key: one that contains tuples from relation A (but not relation B) and one that contains tuples
from relation B (but not relation A).

A = load 'student' as (name:chararray, age:int, gpa:float);
B = load 'student' as (name:chararray, age:int, gpa:float);
dump B;
(joe,18,2.5)
(sam,,3.0)
(bob,,3.5)



Pig Latin Basics

Page 15Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = cogroup A by age, B by age;
dump X;
(18,{(joe,18,2.5)},{(joe,18,2.5)})
(,{(sam,,3.0),(bob,,3.5)},{})
(,{},{(sam,,3.0),(bob,,3.5)})

4.4.6 Nulls and JOIN Operator

The JOIN operator - when performing inner joins - adheres to the SQL standard and
disregards (filters out) null values. (See also Drop Nulls Before a Join.)

A = load 'student' as (name:chararray, age:int, gpa:float);
B = load 'student' as (name:chararray, age:int, gpa:float);
dump B;
(joe,18,2.5)
(sam,,3.0)
(bob,,3.5)
  
X = join A by age, B by age;
dump X;
(joe,18,2.5,joe,18,2.5)

4.4.7 Nulls and FLATTEN Operator

The FLATTEN operator handles null value differently based on its schema.

For null tuples, FLATTEN(null) produces multiples nulls based on the number of elements
in the schema for that field. If tuple has no schema, FLATTEN(null) simply returns a single
null.

For null bags, we would have liked to discard the row just like we do with flatten of an empty
bag. However, it was too late by the time we noticed this inconsistency. In order to preserve
the backward compatibility, FLATTEN(null) for bag produces multiples nulls based on
the number of elements defined for the schema of this bag. If no schema, a single null is
returned.

For bags containing some null tuples, it follows the same rule as flatten of null tuples
described above.

For null maps, FLATTEN(null) produces 2 nulls to represent the key and the value.

For null with other types, FLATTEN(null) simply returns a single null.

4.5 Constants

Pig provides constant representations for all data types except bytearrays.

Constant Example Notes

perf.html#nulls


Pig Latin Basics

Page 16Copyright © 2007 The Apache Software Foundation. All rights reserved.

Simple Data Types

int 19

long 19L

float 19.2F or 1.92e2f

double 19.2 or 1.92e2

chararray 'hello world'

bytearray Not applicable.

boolean true/false Case insensitive.

biginteger 19211921192119211921BI

bigdecimal 192119211921.192119211921BD

Complex Data Types

tuple (19, 2, 1) A constant in this form creates a
tuple.

bag { (19, 2), (1, 2) } A constant in this form creates a
bag.

map [ 'name' # 'John', 'ext' # 5555 ] A constant in this form creates a
map.

Please note the following:

• On UTF-8 systems you can specify string constants consisting of printable ASCII
characters such as 'abc'; you can specify control characters such as '\t'; and, you can
specify a character in Unicode by starting it with '\u', for instance, '\u0001' represents
Ctrl-A in hexadecimal (see Wikipedia ASCII, Unicode, and UTF-8). In theory, you
should be able to specify non-UTF-8 constants on non-UTF-8 systems but as far as we
know this has not been tested.

• To specify a long constant, l or L must be appended to the number (for example,
12345678L). If the l or L is not specified, but the number is too large to fit into an int, the
problem will be detected at parse time and the processing is terminated.

• Any numeric constant with decimal point (for example, 1.5) and/or exponent (for
example, 5e+1) is treated as double unless it ends with the following characters:

• f or F in which case it is assigned type float (for example,  1.5f)
• BD or bd in which case it is assigned type BigDecimal (for example,

 12345678.12345678BD)

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8


Pig Latin Basics

Page 17Copyright © 2007 The Apache Software Foundation. All rights reserved.

• BigIntegers can be specified by supplying BI or bi at the end of the number (for example,
123456789123456BI)

• There is no native constant type for datetime field. You can use a ToDate udf with
chararray constant as argument to generate a datetime value.

The data type definitions for tuples, bags, and maps apply to constants:

• A tuple can contain fields of any data type
• A bag is a collection of tuples
• A map key must be a chararray; a map value can be any data type

Complex constants (either with or without values) can be used in the same places scalar
constants can be used; that is, in FILTER and GENERATE statements.

A = LOAD 'data' USING MyStorage() AS (T: tuple(name:chararray, age: int));
B = FILTER A BY T == ('john', 25);
D = FOREACH B GENERATE T.name, [25#5.6], {(1, 5, 18)};

4.6 Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH,
GROUP, and SPLIT operators as well as the eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the
UTF-8 character set. Depending on the context, expressions can include:

• Any Pig data type (simple data types, complex data types)
• Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)
• Any Pig built in function.
• Any user defined function (UDF) written in Java.

In Pig Latin,

• An arithmetic expression could look like this:

X = GROUP A BY f2*f3;

• A string expression could look like this, where a and b are both chararrays:

X = FOREACH A GENERATE CONCAT(a,b);

• A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));



Pig Latin Basics

Page 18Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.6.1 Field Expressions

Field expressions represent a field or a dereference operator applied to a field.

4.6.2 Star Expressions

Star expressions ( * ) can be used to represent all the fields of a tuple. It is equivalent to
writing out the fields explicitly. In the following example the definition of B and C are
exactly the same, and MyUDF will be invoked with exactly the same arguments in both
cases.

A = LOAD 'data' USING MyStorage() AS (name:chararray, age: int);
B = FOREACH A GENERATE *, MyUDF(name, age);
C = FOREACH A GENERATE name, age, MyUDF(*);
          

A common error when using the star expression is shown below. In this example, the
programmer really wants to count the number of elements in the bag in the second field:
COUNT($1).

G = GROUP A BY $0;
C = FOREACH G GENERATE COUNT(*)
          

There are some restrictions on use of the star expression when the input schema is unknown
(null):

• For GROUP/COGROUP, you can't include a star expression in a GROUP BY column.
• For ORDER BY, if you have project-star as ORDER BY column, you can’t have any

other ORDER BY column in that statement.

4.6.3 Project-Range Expressions

Project-range ( .. ) expressions can be used to project a range of columns from input. For
example:

• .. $x : projects columns $0 through $x, inclusive
• $x .. : projects columns through end, inclusive
• $x .. $y : projects columns through $y, inclusive

If the input relation has a schema, you can refer to columns by alias rather than by column
position. You can also combine aliases and column positions in an expression; for example,
"col1 .. $5" is valid.

Project-range can be used in all cases where the star expression ( * ) is allowed.



Pig Latin Basics

Page 19Copyright © 2007 The Apache Software Foundation. All rights reserved.

Project-range can be used in the following statements: FOREACH, JOIN, GROUP,
COGROUP, and ORDER BY (also when ORDER BY is used within a nested FOREACH
block).

A few examples are shown here:

..... 
grunt> F = foreach IN generate (int)col0, col1 .. col3; 
grunt> describe F; 
F: {col0: int,col1: bytearray,col2: bytearray,col3: bytearray} 
..... 
..... 
grunt> SORT = order IN by col2 .. col3, col0, col4 ..; 
..... 
..... 
J = join IN1 by $0 .. $3, IN2 by $0 .. $3; 
..... 
..... 
g = group l1 by b .. c; 
..... 

There are some restrictions on the use of project-to-end form of project-range (eg "x .. ")
when the input schema is unknown (null):

• For GROUP/COGROUP, the project-to-end form of project-range is not allowed.
• For ORDER BY, the project-to-end form of project-range is supported only as the last

sort column.

..... 
grunt> describe IN; 
Schema for IN unknown. 

/* This statement is supported */
SORT = order IN by $2 .. $3, $6 ..; 

/* This statement is NOT supported */ 
SORT = order IN by $2 .. $3, $6 ..; 
..... 

4.6.4 Boolean Expressions

Boolean expressions can be made up of UDFs that return a boolean value or boolean
operators (see Boolean Operators).

4.6.5 Tuple Expressions

Tuple expressions form subexpressions into tuples. The tuple expression has the form
(expression [, expression …]), where expression is a general expression. The simplest tuple
expression is the star expression, which represents all fields.



Pig Latin Basics

Page 20Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.6.6 General Expressions

General expressions can be made up of UDFs and almost any operator. Since Pig does not
consider boolean a base type, the result of a general expression cannot be a boolean. Field
expressions are the simpliest general expressions.

4.7 Schemas

Schemas enable you to assign names to fields and declare types for fields. Schemas are
optional but we encourage you to use them whenever possible; type declarations result in
better parse-time error checking and more efficient code execution.

Schemas for simple types and complex types can be used anywhere a schema definition is
appropriate.

Schemas are defined with the LOAD, STREAM, and FOREACH operators using the AS
clause. If you define a schema using the LOAD operator, then it is the load function that
enforces the schema (see LOAD and User Defined Functions for more information).

Known Schema Handling

Note the following:

• You can define a schema that includes both the field name and field type.
• You can define a schema that includes the field name only; in this case, the field type

defaults to bytearray.
• You can choose not to define a schema; in this case, the field is un-named and the field

type defaults to bytearray.

If you assign a name to a field, you can refer to that field using the name or by positional
notation. If you don't assign a name to a field (the field is un-named) you can only refer to
the field using positional notation.

If you assign a type to a field, you can subsequently change the type using the cast operators.
If you don't assign a type to a field, the field defaults to bytearray; you can change the default
type using the cast operators.

Unknown Schema Handling

Note the following:

• When you JOIN/COGROUP/CROSS multiple relations, if any relation has an unknown
schema (or no defined schema, also referred to as a null schema), the schema for the
resulting relation is null.

• If you FLATTEN a bag with empty inner schema, the schema for the resulting relation is
null.

udf.html


Pig Latin Basics

Page 21Copyright © 2007 The Apache Software Foundation. All rights reserved.

• If you UNION two relations with incompatible schema, the schema for resulting relation
is null.

• If the schema is null, Pig treats all fields as bytearray (in the backend, Pig will determine
the real type for the fields dynamically)

See the examples below. If a field's data type is not specified, Pig will use bytearray to
denote an unknown type. If the number of fields is not known, Pig will derive an unknown
schema.

/* The field data types are not specified ... */
a = load '1.txt' as (a0, b0);
a: {a0: bytearray,b0: bytearray}

/* The number of fields is not known ... */
a = load '1.txt';
a: Schema for a unknown

How Pig Handles Schema

As shown above, with a few exceptions Pig can infer the schema of a relationship up front.
You can examine the schema of particular relation using DESCRIBE. Pig enforces this
computed schema during the actual execution by casting the input data to the expected data
type. If the process is successful the results are returned to the user; otherwise, a warning is
generated for each record that failed to convert. Note that Pig does not know the actual types
of the fields in the input data prior to the execution; rather, Pig determines the data types and
performs the right conversions on the fly.

Having a deterministic schema is very powerful; however, sometimes it comes at the cost of
performance. Consider the following example:

A = load 'input' as (x, y, z);
B = foreach A generate x+y;

If you do DESCRIBE on B, you will see a single column of type double. This is because Pig
makes the safest choice and uses the largest numeric type when the schema is not know. In
practice, the input data could contain integer values; however, Pig will cast the data to double
and make sure that a double result is returned.

If the schema of a relation can’t be inferred, Pig will just use the runtime data as is and
propagate it through the pipeline.

4.7.1 Schemas with LOAD and STREAM

With LOAD and STREAM operators, the schema following the AS keyword must be
enclosed in parentheses.

test.html#describe
test.html#describe


Pig Latin Basics

Page 22Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example the LOAD statement includes a schema definition for simple data types.

A = LOAD 'data' AS (f1:int, f2:int);

4.7.2 Schemas with FOREACH

With FOREACH operators, the schema following the AS keyword must be enclosed in
parentheses when the FLATTEN operator is used. Otherwise, the schema should not be
enclosed in parentheses.

In this example the FOREACH statement includes FLATTEN and a schema for simple data
types.

X = FOREACH C GENERATE FLATTEN(B) AS (f1:int, f2:int, f3:int), group;

In this example the FOREACH statement includes a schema for simple expression.

X = FOREACH A GENERATE f1+f2 AS x1:int;

In this example the FOREACH statement includes a schemas for multiple fields.

X = FOREACH A GENERATE f1 as user, f2 as age, f3 as gpa;

4.7.3 Schemas for Simple Data Types

Simple data types include int, long, float, double, chararray, bytearray, boolean, datetime,
biginteger and bigdecimal.

4.7.3.1 Syntax

(alias[:type]) [, (alias[:type]) …] )

4.7.3.2 Terms

alias The name assigned to the field.

type (Optional) The simple data type assigned to the field.

The alias and type are separated by a colon ( : ).

If the type is omitted, the field defaults to type
bytearray.

( , ) Multiple fields are enclosed in parentheses and
separated by commas.



Pig Latin Basics

Page 23Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.7.3.3 Examples

In this example the schema defines multiple types.

cat student;
John 18 4.0
Mary 19    3.8
Bill 20    3.9
Joe 18    3.8

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

DESCRIBE A;
A: {name: chararray,age: int,gpa: float}

DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Bill,20,3.9F)
(Joe,18,3.8F)

In this example field "gpa" will default to bytearray because no type is declared.

cat student;
John 18 4.0
Mary 19 3.8
Bill 20 3.9
Joe 18 3.8

A = LOAD 'data' AS (name:chararray, age:int, gpa);

DESCRIBE A;
A: {name: chararray,age: int,gpa: bytearray}

DUMP A;
(John,18,4.0)
(Mary,19,3.8)
(Bill,20,3.9)
(Joe,18,3.8)

4.7.4 Schemas for Complex Data Types

Complex data types include tuples, bags, and maps.

4.7.5 Tuple Schemas

A tuple is an ordered set of fields.

4.7.5.1 Syntax

alias[:tuple] (alias[:type]) [, (alias[:type]) …] )



Pig Latin Basics

Page 24Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.7.5.2 Terms

alias The name assigned to the tuple.

:tuple (Optional) The data type, tuple (case insensitive).

( ) The designation for a tuple, a set of parentheses.

alias[:type] The constituents of the tuple, where the schema
definition rules for the corresponding type applies to
the constituents of the tuple:

• alias – the name assigned to the field
• type (optional) – the simple or complex data type

assigned to the field

4.7.5.3 Examples

In this example the schema defines one tuple. The load statements are equivalent.

cat data;
(3,8,9)
(1,4,7)
(2,5,8)

A = LOAD 'data' AS (T: tuple (f1:int, f2:int, f3:int));
A = LOAD 'data' AS (T: (f1:int, f2:int, f3:int));

DESCRIBE A;
A: {T: (f1: int,f2: int,f3: int)}

DUMP A;
((3,8,9))
((1,4,7))
((2,5,8))

In this example the schema defines two tuples.

cat data;
(3,8,9) (mary,19)
(1,4,7) (john,18)
(2,5,8) (joe,18)

A = LOAD data AS (F:tuple(f1:int,f2:int,f3:int),T:tuple(t1:chararray,t2:int));

DESCRIBE A;
A: {F: (f1: int,f2: int,f3: int),T: (t1: chararray,t2: int)}

DUMP A;
((3,8,9),(mary,19))
((1,4,7),(john,18))
((2,5,8),(joe,18))



Pig Latin Basics

Page 25Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.7.6 Bag Schemas

A bag is a collection of tuples.

4.7.6.1 Syntax

alias[:bag] {tuple}

4.7.6.2 Terms

alias The name assigned to the bag.

:bag (Optional) The data type, bag (case insensitive).

{ } The designation for a bag, a set of curly brackets.

tuple A tuple (see Tuple Schema).

4.7.6.3 Examples

In this example the schema defines a bag. The two load statements are equivalent.

cat data;
{(3,8,9)}
{(1,4,7)}
{(2,5,8)}

A = LOAD 'data' AS (B: bag {T: tuple(t1:int, t2:int, t3:int)});
A = LOAD 'data' AS (B: {T: (t1:int, t2:int, t3:int)});

DESCRIBE A:
A: {B: {T: (t1: int,t2: int,t3: int)}}

DUMP A;
({(3,8,9)})
({(1,4,7)})
({(2,5,8)})

4.7.7 Map Schemas

A map is a set of key value pairs.

4.7.7.1 Syntax (<> demotes optional)

alias<:map> [ <type> ]

4.7.7.2 Terms

alias The name assigned to the map.



Pig Latin Basics

Page 26Copyright © 2007 The Apache Software Foundation. All rights reserved.

:map (Optional) The data type, map (case insensitive).

[ ] The designation for a map, a set of straight brackets
[ ].

type (Optional) The datatype (all types allowed, bytearray
is the default).

The type applies to the map value only; the map key
is always type chararray (see Map).

If a type is declared then ALL values in the map must
be of this type.

4.7.7.3 Examples

In this example the schema defines an untyped map (the map values default to bytearray).
The load statements are equivalent.

cat data;
[open#apache]
[apache#hadoop]

A = LOAD 'data' AS (M:map []);
A = LOAD 'data' AS (M:[]);

DESCRIBE A;
a: {M: map[ ]}

DUMP A;
([open#apache])
([apache#hadoop])

This example shows the use of a typed maps.

/* Map types are declared*/
a = load '1.txt' as(map[int]); --Map value is int
b = foreach a generate (map[(i:int)])a0; -- Map value is tuple
b = stream a through `cat` as (m:map[{(i:int,j:chararray)}]); -- Map value is bag

/* The MapLookup of a typed map will result in a datatype of the map value */
a = load '1.txt' as(map[int]);
b = foreach a generate $0#'key';

/* Schema for b */
b: {int}

4.7.8 Schemas for Multiple Types

You can define schemas for data that includes multiple types.



Pig Latin Basics

Page 27Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.7.8.1 Example

In this example the schema defines a tuple, bag, and map.

A = LOAD 'mydata' AS (T1:tuple(f1:int, f2:int), B:bag{T2:tuple(t1:float,t2:float)},
 M:map[] );

A = LOAD 'mydata' AS (T1:(f1:int, f2:int), B:{T2:(t1:float,t2:float)}, M:[] );

4.7.8.2 Previous Relation Shortcut

There is a shortcut form to reference the relation on the previous line of a pig script or grunt
session:

a = load 'thing' as (x:int);
b = foreach @ generate x;
c = foreach @ generate x;
d = foreach @ generate x;

5 Arithmetic Operators and More

5.1 Arithmetic Operators

5.1.1 Description

Operator Symbol  Notes

addition +

subtraction -

multiplication  *

division  /

modulo  % Returns the remainder of a divided
by b (a%b).

Works with integral numbers (int,
long).

bincond ? : (condition ? value_if_true :
value_if_false)

The bincond should be enclosed in
parenthesis.

The schemas for the two
conditional outputs of the bincond
should match.



Pig Latin Basics

Page 28Copyright © 2007 The Apache Software Foundation. All rights reserved.

Use expressions only (relational
operators are not allowed).

case CASE WHEN THEN ELSE END CASE expression [ WHEN value
THEN value ]+ [ ELSE value ]?
END

CASE [ WHEN condition THEN
value ]+ [ ELSE value ]? END

Case operator is equivalent to
nested bincond operators.

The schemas for all the outputs
of the when/else branches should
match.

Use expressions only (relational
operators are not allowed).

5.1.1.1 Examples

Suppose we have relation A.

A = LOAD 'data' AS (f1:int, f2:int, B:bag{T:tuple(t1:int,t2:int)});

DUMP A;
(10,1,{(2,3),(4,6)})
(10,3,{(2,3),(4,6)})
(10,6,{(2,3),(4,6),(5,7)})

In this example the modulo operator is used with fields f1 and f2.

X = FOREACH A GENERATE f1, f2, f1%f2;

DUMP X;
(10,1,0)
(10,3,1)
(10,6,4)

In this example the bincond operator is used with fields f2 and B. The condition is "f2 equals
1"; if the condition is true, return 1; if the condition is false, return the count of the number of
tuples in B.

X = FOREACH A GENERATE f2, (f2==1?1:COUNT(B));

DUMP X;
(1,1L)
(3,2L)
(6,3L)



Pig Latin Basics

Page 29Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example the case operator is used with field f2. The expression is "f2 % 2"; if the
expression is equal to 0, return 'even'; if the expression is equal to 1, return 'odd'.

X = FOREACH A GENERATE f2, (
  CASE f2 % 2
    WHEN 0 THEN 'even'
    WHEN 1 THEN 'odd'
  END
);
DUMP X;
(1,odd)
(3,odd)
(6,even)

This can be also written as follows:

X = FOREACH A GENERATE f2, (
  CASE
    WHEN f2 % 2 == 0 THEN 'even'
    WHEN f2 % 2 == 1 THEN 'odd'
  END
);
DUMP X;
(1,odd)
(3,odd)
(6,even)

5.1.1.2 Types Table: addition (+) and subtraction (-) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

bag error error error error error error error error error

tuple not yet error error error error error error error

map error error error error error error error

int int long float double error cast as
int

long long float double error cast as
long  

float float double error cast as
float  

double double error cast as
double  



Pig Latin Basics

Page 30Copyright © 2007 The Apache Software Foundation. All rights reserved.

chararray error error

bytearray cast as
double

5.1.1.3 Types Table: multiplication (*) and division (/) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

bag error error error not yet not yet not yet not yet error error

tuple error error not yet not yet not yet not yet error error

map error error error error error error error

int int long float double error cast as
int

long long float double error cast as
long

float float double error cast as
float

double double error cast as
double  

chararray error error

bytearray cast as
double  

5.1.1.4 Types Table: modulo (%) operator

int long bytearray

int int long cast as int

long long cast as long

bytearray error

5.2 Boolean Operators

5.2.1 Description

Operator Symbol  Notes



Pig Latin Basics

Page 31Copyright © 2007 The Apache Software Foundation. All rights reserved.

AND      and

OR  or

IN in IN operator is equivalent to nested
OR operators.

NOT not

The result of a boolean expression (an expression that includes boolean and comparison
operators) is always of type boolean (true or false).

5.2.1.1 Example

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1)) OR (f1 IN (9, 10, 11));

5.3 Cast Operators

5.3.1 Description

Pig Latin supports casts as shown in this table.

from /
to

bag tuple map int long float double chararray bytearray boolean

bag error error error error error error error error error

tuple error error error error error error error error error

map error error error error error error error error error

int error error error yes yes yes yes error error

long error error error yes yes yes yes error error

float error error error yes yes yes yes error error

double error error error yes yes yes yes error error

chararray error error error yes yes yes yes error yes

bytearray yes yes yes yes yes yes yes yes yes

boolean error error error error error error error yes error

5.3.1.1 Syntax  

{(data_type) |  (tuple(data_type))  | (bag{tuple(data_type)}) | (map[]) } field



Pig Latin Basics

Page 32Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.3.1.2 Terms

(data_type) The data type you want to cast to, enclosed in
parentheses. You can cast to any data type except
bytearray (see the table above).

field The field whose type you want to change.

The field can be represented by positional notation
or by name (alias). For example, if f1 is the first field
and type int, you can cast to type long using (long)$0
or (long)f1.

5.3.1.3 Usage

Cast operators enable you to cast or convert data from one type to another, as long as
conversion is supported (see the table above). For example, suppose you have an integer
field, myint, which you want to convert to a string. You can cast this field from int to
chararray using (chararray)myint.

Please note the following:

• A field can be explicitly cast. Once cast, the field remains that type (it is not
automatically cast back). In this example $0 is explicitly cast to int.

B = FOREACH A GENERATE (int)$0 + 1;

• Where possible, Pig performs implicit casts. In this example $0 is cast to int (regardless
of underlying data) and $1 is cast to double.

B = FOREACH A GENERATE $0 + 1, $1 + 1.0

• When two bytearrays are used in arithmetic expressions or a bytearray expression is used
with built in aggregate functions (such as SUM) they are implicitly cast to double. If the
underlying data is really int or long, you’ll get better performance by declaring the type
or explicitly casting the data.

• Downcasts may cause loss of data. For example casting from long to int may drop bits.

5.3.2 Examples

In this example an int is cast to type chararray (see relation X).

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;
(1,2,3)



Pig Latin Basics

Page 33Copyright © 2007 The Apache Software Foundation. All rights reserved.

(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = GROUP A BY f1;

DUMP B;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})
(7,{(7,2,5)})
(8,{(8,3,4),(8,4,3)})

DESCRIBE B;
B: {group: int,A: {f1: int,f2: int,f3: int}}

X = FOREACH B GENERATE group, (chararray)COUNT(A) AS total;
(1,1)
(4,2)
(7,1)
(8,2)

DESCRIBE X;
X: {group: int,total: chararray}

In this example a bytearray (fld in relation A) is cast to type tuple.

cat data;
(1,2,3)
(4,2,1)
(8,3,4)

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;
a: {fld: bytearray}

DUMP A;
((1,2,3))
((4,2,1))
((8,3,4))

B = FOREACH A GENERATE (tuple(int,int,float))fld;

DESCRIBE B;
b: {(int,int,float)}

DUMP B;
((1,2,3))
((4,2,1))
((8,3,4))

In this example a bytearray (fld in relation A) is cast to type bag.

cat data;



Pig Latin Basics

Page 34Copyright © 2007 The Apache Software Foundation. All rights reserved.

{(4829090493980522200L)}
{(4893298569862837493L)}
{(1297789302897398783L)}

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;
A: {fld: bytearray}

DUMP A;
({(4829090493980522200L)})
({(4893298569862837493L)})
({(1297789302897398783L)})

B = FOREACH A GENERATE (bag{tuple(long)})fld; 

DESCRIBE B;
B: {{(long)}}

DUMP B;
({(4829090493980522200L)})
({(4893298569862837493L)})
({(1297789302897398783L)})

In this example a bytearray (fld in relation A) is cast to type map.

cat data;
[open#apache]
[apache#hadoop]
[hadoop#pig]
[pig#grunt]

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;
A: {fld: bytearray}

DUMP A;
([open#apache])
([apache#hadoop])
([hadoop#pig])
([pig#grunt])

B = FOREACH A GENERATE ((map[])fld;

DESCRIBE B;
B: {map[ ]}

DUMP B;
([open#apache])
([apache#hadoop])
([hadoop#pig])
([pig#grunt])



Pig Latin Basics

Page 35Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.3.3 Casting Relations to Scalars

Pig allows you to cast the elements of a single-tuple relation into a scalar value. The tuple
can be a single-field or multi-field tulple. If the relation contains more than one tuple,
however, a runtime error is generated: "Scalar has more than one row in the output".

The cast relation can be used in any place where an expression of the type would make
sense, including FOREACH, FILTER, and SPLIT. Note that if an explicit cast is not used an
implict cast will be inserted according to Pig rules. Also, when the schema can't be inferred
bytearray is used.

The primary use case for casting relations to scalars is the ability to use the values of global
aggregates in follow up computations.

In this example the percentage of clicks belonging to a particular user are computed. For the
FOREACH statement, an explicit cast is used. If the SUM is not given a name, a position can
be used as well (userid, clicks/(double)C.$0).

A = load 'mydata' as (userid, clicks); 
B = group A all; 
C = foreach B genertate SUM(A.clicks) as total; 
D = foreach A generate userid, clicks/(double)C.total; 
dump D;

In this example a multi-field tuple is used. For the FILTER statement, Pig performs an
implicit cast. For the FOREACH statement, an explicit cast is used.

A = load 'mydata' as (userid, clicks); 
B = group A all; 
C = foreach B genertate SUM(A.clicks) as total, COUNT(A) as cnt; 
D = FILTER A by clicks > C.total/3 
E = foreach D generate userid, clicks/(double)C.total, cnt; 
dump E; 

5.4 Comparison Operators

5.4.1 Description

Operator Symbol  Notes

equal  ==

not equal !=

less than  <

greater than >



Pig Latin Basics

Page 36Copyright © 2007 The Apache Software Foundation. All rights reserved.

less than or equal to  <=

greater than or equal to >=

pattern matching  matches Takes an expression on the left
and a string constant on the right.

expression matches string-
constant

Use the Java format for regular
expressions.

Use the comparison operators with numeric and string data.

5.4.2 Examples

Numeric Example

X = FILTER A BY (f1 == 8);

String Example

X = FILTER A BY (f2 == 'apache');

Matches Example

X = FILTER A BY (f1 matches '.*apache.*');

5.4.3 Types Table: equal (==) operator

bag tuple map int long float double chararraybytearraybooleandatetimebigintegerbigdecimal

bag error error error error error error error error error error error error error

tuple boolean

(see
Note
1)

error error error error error error error error error error error

map boolean

(see
Note
2)

error error error error error error error error error error

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html


Pig Latin Basics

Page 37Copyright © 2007 The Apache Software Foundation. All rights reserved.

int booleanbooleanbooleanbooleanerror cast
as
boolean

error error error error

long booleanbooleanbooleanerror cast
as
boolean

error error error error

float booleanbooleanerror cast
as
boolean
 

error error error error

double booleanerror cast
as
boolean
 

error error error error

chararray booleancast
as
boolean

error error error error

bytearray booleanerror error error error

boolean booleanerror error error

datetime booleanerror error

biginteger booleanerror

bigdecimal boolean

Note 1: boolean (Tuple A is equal to tuple B if they have the same size s, and for all 0 <= i <
s A[i] == B[i])

Note 2: boolean (Map A is equal to map B if A and B have the same number of entries, and
for every key k1 in A with a value of v1, there is a key k2 in B with a value of v2, such that
k1 == k2 and v1 == v2)

5.4.4 Types Table: not equal (!=) operator

bag tuple map int long float double chararraybytearraybooleandatetimebigintegerbigdecimal

bag error error error error error error error error error error error error error

tuple error error error error error error error error error error error error

map error error error error error error error error error error error



Pig Latin Basics

Page 38Copyright © 2007 The Apache Software Foundation. All rights reserved.

int booleanbooleanbooleanbooleanerror boolean
(bytearray
cast
as
int)

error error error error

long booleanbooleanbooleanerror boolean
(bytearray
cast
as
long)

error error error error

float booleanbooleanerror boolean
(bytearray
cast
as
float)

error error error error

double booleanerror boolean
(bytearray
cast
as
double)

error error error error

chararray booleanboolean
(bytearray
cast
as
chararray)

error error error error

bytearray booleanerror error error error

boolean booleanerror error error

datetime booleanerror error

biginteger booleanerror

bigdecimal boolean

5.4.5 Types Table: matches operator

*Cast as chararray (the second argument must be chararray)

chararray bytearray*

chararray boolean boolean  

bytearray boolean boolean



Pig Latin Basics

Page 39Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.5 Type Construction Operators

5.5.1 Description

Operator Symbol  Notes

tuple constructor ( ) Use to construct a tuple from the
specified elements. Equivalent to
TOTUPLE.

bag constructor { } Use to construct a bag from the
specified elements. Equivalent to
TOBAG.

map constructor [ ] Use to construct a map from the
specified elements. Equivalent to
TOMAP.

Note the following:

• These operators can be used anywhere where the expression of the corresponding type is
acceptable including FOREACH GENERATE, FILTER, etc.

• A single element enclosed in parens ( ) like (5) is not considered to be a tuple but rather
an arithmetic operator.

• For bags, every element is put in the bag; if the element is not a tuple Pig will create a
tuple for it:
• Given this {$1, $2} Pig creates this {($1), ($2)} a bag with two tuples

... neither $1 and $2 are tuples so Pig creates a tuple around each item

 
• Given this {($1), $2} Pig creates this {($1), ($2)} a bag with two tuples

... since ($1) is treated as $1 (one cannot create a single element tuple using this
syntax), {($1), $2} becomes {$1, $2} and Pig creates a tuple around each item

 
• Given this {($1, $2)} Pig creates this {($1, $2)} a bag with a single tuple

... Pig creates a tuple ($1, $2) and then puts this tuple into the bag

 

5.5.2 Examples

Tuple Construction

A = load 'students' as (name:chararray, age:int, gpa:float);
B = foreach A generate (name, age);
store B into 'results';

func.html#totuple
func.html#tobag
func.html#tomap


Pig Latin Basics

Page 40Copyright © 2007 The Apache Software Foundation. All rights reserved.

Input (students):
joe smith  20  3.5
amy chen   22  3.2
leo allen  18  2.1

Output (results):
(joe smith,20)
(amy chen,22)
(leo allen,18)

Bag Construction

A = load 'students' as (name:chararray, age:int, gpa:float);
B = foreach A generate {(name, age)}, {name, age};
store B into 'results';

Input (students):
joe smith  20  3.5
amy chen   22  3.2
leo allen  18  2.1

Output (results):
{(joe smith,20)}   {(joe smith),(20)}
{(amy chen,22)}    {(amy chen),(22)}
{(leo allen,18)}   {(leo allen),(18)}

Map Construction

A = load 'students' as (name:chararray, age:int, gpa:float);
B = foreach A generate [name, gpa];
store B into 'results';

Input (students):
joe smith  20  3.5
amy chen   22  3.2
leo allen  18  2.1

Output (results):
[joe smith#3.5]
[amy chen#3.2]
[leo allen#2.1]

5.6 Dereference Operators

5.6.1 Description

Operator Symbol  Notes

tuple dereference      tuple.id or tuple.(id,…) Tuple dereferencing can be done
by name (tuple.field_name) or
position (mytuple.$0). If a set of
fields are dereferenced (tuple.
(name1, name2) or tuple.($0,



Pig Latin Basics

Page 41Copyright © 2007 The Apache Software Foundation. All rights reserved.

$1)), the expression represents a
tuple composed of the specified
fields. Note that if the dot operator
is applied to a bytearray, the
bytearray will be assumed to be a
tuple.

bag dereference bag.id or bag.(id,…) Bag dereferencing can be done by
name (bag.field_name) or position
(bag.$0). If a set of fields are
dereferenced (bag.(name1, name2)
or bag.($0, $1)), the expression
represents a bag composed of the
specified fields.

map dereference map#'key' Map dereferencing must be
done by key (field_name#key or
$0#key). If the pound operator
is applied to a bytearray, the
bytearray is assumed to be a map.
If the key does not exist, the empty
string is returned.

5.6.2 Examples

Tuple Example

Suppose we have relation A.

A = LOAD 'data' as (f1:int, f2:tuple(t1:int,t2:int,t3:int));

DUMP A;
(1,(1,2,3))
(2,(4,5,6))
(3,(7,8,9))
(4,(1,4,7))
(5,(2,5,8))

In this example dereferencing is used to retrieve two fields from tuple f2.

X = FOREACH A GENERATE f2.t1,f2.t3;

DUMP X;
(1,3)
(4,6)
(7,9)
(1,7)
(2,8)

Bag Example



Pig Latin Basics

Page 42Copyright © 2007 The Apache Software Foundation. All rights reserved.

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

A = LOAD 'data' AS (f1:int, f2:int,f3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = GROUP A BY f1;

DUMP B;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})
(7,{(7,2,5)})
(8,{(8,3,4),(8,4,3)})

ILLUSTRATE B;
etc …
----------------------------------------------------------
| b   | group: int | a: bag({f1: int,f2: int,f3: int}) |
----------------------------------------------------------

In this example dereferencing is used with relation X to project the first field (f1) of each
tuple in the bag (a).

X = FOREACH B GENERATE a.f1;

DUMP X;
({(1)})
({(4),(4)})
({(7)})
({(8),(8)})

Tuple/Bag Example

Suppose we have relation B, formed by grouping relation A  (see the GROUP operator for
information about the field names in relation B).

A = LOAD 'data' AS (f1:int, f2:int, f3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)



Pig Latin Basics

Page 43Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = GROUP A BY (f1,f2);

DUMP B;
((1,2),{(1,2,3)})
((4,2),{(4,2,1)})
((4,3),{(4,3,3)})
((7,2),{(7,2,5)})
((8,3),{(8,3,4)})
((8,4),{(8,4,3)})

ILLUSTRATE B;
etc …
-------------------------------------------------------------------------------
| b     | group: tuple({f1: int,f2: int}) | a: bag({f1: int,f2: int,f3: int}) |
-------------------------------------------------------------------------------
|       | (8, 3)                                | {(8, 3, 4), (8, 3, 4)} |
-------------------------------------------------------------------------------

In this example dereferencing is used to project a field (f1) from a tuple (group) and a field
(f1) from a bag (a).

X = FOREACH B GENERATE group.f1, a.f1;

DUMP X;
(1,{(1)})
(4,{(4)})
(4,{(4)})
(7,{(7)})
(8,{(8)})
(8,{(8)})

Map Example

Suppose we have relation A.

A = LOAD 'data' AS (f1:int, f2:map[]);

DUMP A;
(1,[open#apache])
(2,[apache#hadoop])
(3,[hadoop#pig])
(4,[pig#grunt])

In this example dereferencing is used to look up the value of key 'open'.

X = FOREACH A GENERATE f2#'open';

DUMP X;
(apache)
()
()
()



Pig Latin Basics

Page 44Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.7 Disambiguate Operator

After JOIN, COGROUP, CROSS, or FLATTEN operations, the field names have the
orginial alias and the disambiguate operator ( :: ) prepended in the schema. The disambiguate
operator is used to identify field names in case there is a ambiguity.

In this example, to disambiguate y, use A::y or B::y. In cases where there is no ambiguity,
such as z, the :: is not necessary but is still supported.

A = load 'data1' as (x, y);
B = load 'data2' as (x, y, z);
C = join A by x, B by x;
D = foreach C generate A::y, z; -- Cannot simply refer to y as it can refer to A::y or B::y

In cases where the schema is stored as part of the StoreFunc like PigStorage, JsonStorage,
AvroStorage or OrcStorage, users generally have to use an extra FOREACH before STORE
to rename the field names and remove the disambiguate operator from the names. To
automatically remove the disambiguate operator from the schema for the STORE operation,
the pig.store.schema.disambiguate Pig property can be set to "false". It is the responsibility of
the user to make sure that there is no conflict in the field names when using this setting.

5.8 Flatten Operator

The FLATTEN operator looks like a UDF syntactically, but it is actually an operator that
changes the structure of tuples and bags in a way that a UDF cannot. Flatten un-nests tuples,
bags and maps. The idea is the same, but the operation and result is different for each type of
structure.

For tuples, flatten substitutes the fields of a tuple in place of the tuple. For example, consider
a relation that has a tuple of the form (a, (b, c)). The expression GENERATE $0, flatten($1),
will cause that tuple to become (a, b, c).

For bags, the situation becomes more complicated. When we un-nest a bag, we create new
tuples. If we have a relation that is made up of tuples of the form ({(b,c),(d,e)}) and we apply
GENERATE flatten($0), we end up with two tuples (b,c) and (d,e). When we remove a level
of nesting in a bag, sometimes we cause a cross product to happen. For example, consider a
relation that has a tuple of the form (a, {(b,c), (d,e)}), commonly produced by the GROUP
operator. If we apply the expression GENERATE $0, flatten($1) to this tuple, we will create
new tuples: (a, b, c) and (a, d, e).

For maps, flatten creates a tuple with two fields containing the key and value. If we have
a map field named kvpair with input as (m[k1#v1, k2#v2]) and we apply GENERATE
flatten(kvpair), it will generate two tuples (k1,v1) and (k2,v2) which can be accessed as
kvpair::key and kvpair::value.



Pig Latin Basics

Page 45Copyright © 2007 The Apache Software Foundation. All rights reserved.

When there are additional projections in the expression, a cross product will happen similar
to bags. For example, if we apply the expression GENERATE $0, FLATTEN($1) to the
input tuple (a, m[k1#1, k2#2, k3#3]), we will see (a,k1,1), (a,k2,2) and (a,k3,3) as the result.

For other types, flatten becomes a no-op and simply returns the passed value.

Also note that the flatten of empty bag will result in that row being discarded; no output is
generated. (See also Drop Nulls Before a Join.)

As for flatten with null values, see Nulls and FLATTEN operator.

grunt> cat empty.bag
{}      1
grunt> A = LOAD 'empty.bag' AS (b : bag{}, i : int);
grunt> B = FOREACH A GENERATE flatten(b), i;
grunt> DUMP B;
grunt>

For examples using the FLATTEN operator, see FOREACH.

5.9 Null Operators

5.9.1 Description

Operator Symbol  Notes

is null is null

is not null  is not null  

For a detailed discussion of nulls see Nulls and Pig Latin.

5.9.2 Examples

In this example, values that are not null are obtained.

X = FILTER A BY f1 is not null;

5.9.3 Types Table

The null operators can be applied to all data types (see Nulls and Pig Latin).

5.10 Sign Operators

5.10.1 Description

Operator Symbol  Notes

perf.html#nulls


Pig Latin Basics

Page 46Copyright © 2007 The Apache Software Foundation. All rights reserved.

positive      +  Has no effect.

negative (negation)  -  Changes the sign of a positive or
negative number.

5.10.2 Examples

In this example, the negation operator is applied to the "x" values.

A = LOAD 'data' as (x, y, z);

B = FOREACH A GENERATE -x, y;

5.10.3 Types Table: negative ( - ) operator

bag error

tuple error

map error

int int

long long

float float

double double

chararray error

bytearray double (as double)

datetime error

biginteger biginteger

bigdecimal bigdecimal

6 Relational Operators

6.1 ASSERT

Assert a condition on the data.

6.1.1 Syntax

ASSERT alias BY expression [, message];



Pig Latin Basics

Page 47Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.1.2 Terms

alias The name of the relation.

BY Required keyword.

expression A boolean expression.

message Error message when assertion fails.

6.1.3 Usage

Use assert to ensure a condition is true on your data. Processing fails if any of the records
voilate the condition.

6.1.4 Examples

Suppose we have relation A.

A = LOAD 'data' AS (a0:int,a1:int,a2:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

Now, you can assert that a0 column in your data is >0, fail if otherwise

ASSERT A by a0 > 0, 'a0 should be greater than 0';

6.2 COGROUP

See the GROUP operator.

6.3 CROSS

Computes the cross product of two or more relations.

6.3.1 Syntax

alias = CROSS alias, alias [, alias …] [PARTITION BY partitioner] [PARALLEL n];



Pig Latin Basics

Page 48Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.3.2 Terms

alias The name of a relation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

• For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.3.3 Usage

Use the CROSS operator to compute the cross product (Cartesian product) of two or more
relations.

CROSS is an expensive operation and should be used sparingly.

6.3.4 Example

Suppose we have relations A and B.

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;
(2,4)
(8,9)
(1,3)

In this example the cross product of relation A and B is computed.

X = CROSS A, B;

DUMP X;
(1,2,3,2,4)
(1,2,3,8,9)
(1,2,3,1,3)
(4,2,1,2,4)
(4,2,1,8,9)

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel


Pig Latin Basics

Page 49Copyright © 2007 The Apache Software Foundation. All rights reserved.

(4,2,1,1,3)

6.4 CUBE

Performs cube/rollup operations.

6.4.1 Cube operation

Cube operation computes aggregates for all possbile combinations of specified group by
dimensions. The number of group by combinations generated by cube for n dimensions will
be 2^n.

6.4.2 Rollup operation

Rollup operations computes multiple levels of aggregates based on hierarchical ordering of
specified group by dimensions. Rollup is useful when there is hierarchical ordering on the
dimensions. The number of group by combinations generated by rollup for n dimensions will
be n+1.

6.4.3 Syntax

alias = CUBE alias BY { CUBE expression | ROLLUP expression }, [ CUBE expression | ROLLUP
expression ] [PARALLEL n];

6.4.4 Terms

alias The name of the relation.

CUBE Keyword

BY Keyword

expression Projections (dimensions) of the relation. Supports
field, star and project-range expressions.

ROLLUP Keyword

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.4.5 Example

6.4.6 Basic usage of CUBE operation

perf.html#parallel


Pig Latin Basics

Page 50Copyright © 2007 The Apache Software Foundation. All rights reserved.

salesinp = LOAD '/pig/data/salesdata' USING PigStorage(',') AS
    (product:chararray, year:int, region:chararray, state:chararray, city:chararray,
 sales:long);
cubedinp = CUBE salesinp BY CUBE(product,year);
result = FOREACH cubedinp GENERATE FLATTEN(group), SUM(cube.sales) AS totalsales;

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
cube operation will output

(car,2012,4000)
(car,,4000)
(,2012,4000)
(,,4000)

6.4.7 Output schema

grunt> describe cubedinp;
cubedinp: {group: (product: chararray,year: int),cube: {(product: chararray,year:
 int,region: chararray,
state: chararray,city: chararray,sales: long)}}

Note the second column, ‘cube’ field which is a bag of all tuples that belong to ‘group’.
Also note that the measure attribute ‘sales’ along with other unused dimensions in load
statement are pushed down so that it can be referenced later while computing aggregates on
the measure, like in this case SUM(cube.sales).

6.4.8 Basic usage of ROLLUP operation

salesinp = LOAD '/pig/data/salesdata' USING PigStorage(',') AS
    (product:chararray, year:int, region:chararray, state:chararray, city:chararray,
 sales:long);
rolledup = CUBE salesinp BY ROLLUP(region,state,city);
result = FOREACH rolledup GENERATE FLATTEN(group), SUM(cube.sales) AS totalsales;

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
rollup operation will output

(midwest,ohio,columbus,4000)
(midwest,ohio,,4000)
(midwest,,,4000)
(,,,4000)

6.4.9 Output schema

grunt> describe rolledup;



Pig Latin Basics

Page 51Copyright © 2007 The Apache Software Foundation. All rights reserved.

rolledup: {group: (region: chararray,state: chararray,city: chararray),cube: {(region:
 chararray,
state: chararray,city: chararray,product: chararray,year: int,sales: long)}}

6.4.10 Basic usage of CUBE and ROLLUP operation combined

If CUBE and ROLLUP operations are used together, the output groups will be the cross
product of all groups generated by cube and rollup operation. If there are m dimensions in
cube operations and n dimensions in rollup operation then overall number of combinations
will be (2^m) * (n+1).

salesinp = LOAD '/pig/data/salesdata' USING PigStorage(',') AS
    (product:chararray, year:int, region:chararray, state:chararray, city:chararray,
 sales:long);
cubed_and_rolled = CUBE salesinp BY CUBE(product,year), ROLLUP(region, state, city);
result = FOREACH cubed_and_rolled GENERATE FLATTEN(group), SUM(cube.sales) AS totalsales;

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
cube and rollup operation will output

(car,2012,midwest,ohio,columbus,4000)
(car,2012,midwest,ohio,,4000)
(car,2012,midwest,,,4000)
(car,2012,,,,4000)
(car,,midwest,ohio,columbus,4000)
(car,,midwest,ohio,,4000)
(car,,midwest,,,4000)
(car,,,,,4000)
(,2012,midwest,ohio,columbus,4000)
(,2012,midwest,ohio,,4000)
(,2012,midwest,,,4000)
(,2012,,,,4000)
(,,midwest,ohio,columbus,4000)
(,,midwest,ohio,,4000)
(,,midwest,,,4000)
(,,,,,4000)

6.4.11 Output schema

grunt> describe cubed_and_rolled;
cubed_and_rolled: {group: (product: chararray,year: int,region: chararray,
state: chararray,city: chararray),cube: {(product: chararray,year: int,region: chararray,
state: chararray,city: chararray,sales: long)}}

6.4.12 Handling null values in dimensions

Since null values are used to represent subtotals in cube and rollup operation, in order
to differentiate the legitimate null values that already exists as dimension values, CUBE



Pig Latin Basics

Page 52Copyright © 2007 The Apache Software Foundation. All rights reserved.

operator converts any null values in dimensions to "unknown" value before performing cube
or rollup operation. For example, for CUBE(product,location) with a sample tuple (car,) the
output will be

(car,unknown)
(car,)
(,unknown)
(,)

6.5 DEFINE

See:

• DEFINE (UDFs, streaming)
• DEFINE (macros)

6.6 DISTINCT

Removes duplicate tuples in a relation.

6.6.1 Syntax

alias = DISTINCT alias [PARTITION BY partitioner] [PARALLEL n];       

6.6.2 Terms

alias The name of the relation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

• For usage, see Example: PARTITION BY.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.6.3 Usage

Use the DISTINCT operator to remove duplicate tuples in a relation. DISTINCT does not
preserve the original order of the contents (to eliminate duplicates, Pig must first sort the
data). You cannot use DISTINCT on a subset of fields; to do this, use FOREACH and

basic.html#define-udfs
cont.html#define-macros
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel


Pig Latin Basics

Page 53Copyright © 2007 The Apache Software Foundation. All rights reserved.

a nested block to first select the fields and then apply DISTINCT (see Example: Nested
Block).

6.6.4 Example

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(8,3,4)
(1,2,3)        
(4,3,3)        
(4,3,3)        
(1,2,3) 

In this example all duplicate tuples are removed.

X = DISTINCT A;

DUMP X;
(1,2,3)
(4,3,3)
(8,3,4)

6.7 FILTER

Selects tuples from a relation based on some condition.

6.7.1 Syntax

alias = FILTER alias  BY expression;

6.7.2 Terms

alias The name of the relation.

BY Required keyword.

expression A boolean expression.

6.7.3 Usage

Use the FILTER operator to work with tuples or rows of data (if you want to work with
columns of data, use the FOREACH...GENERATE operation).

FILTER is commonly used to select the data that you want; or, conversely, to filter out
(remove) the data you don’t want.



Pig Latin Basics

Page 54Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.7.4 Examples

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

In this example the condition states that if the third field equals 3, then include the tuple with
relation X.

X = FILTER A BY f3 == 3;

DUMP X;
(1,2,3)
(4,3,3)
(8,4,3)

In this example the condition states that if the first field equals 8 or if the sum of fields f2 and
f3 is not greater than first field, then include the tuple relation X.

X = FILTER A BY (f1 == 8) OR (NOT (f2+f3 > f1));

DUMP X;
(4,2,1)
(8,3,4)
(7,2,5)
(8,4,3)

6.8 FOREACH

Generates data transformations based on columns of data.

6.8.1 Syntax

alias  = FOREACH { block | nested_block };

6.8.2 Terms

alias The name of relation (outer bag).

block FOREACH…GENERATE block used with a relation
(outer bag). Use this syntax:



Pig Latin Basics

Page 55Copyright © 2007 The Apache Software Foundation. All rights reserved.

alias = FOREACH alias GENERATE expression [AS
schema] [expression [AS schema]….];

See Schemas

nested_block Nested FOREACH...GENERATE block used with a
inner bag. Use this syntax:

alias = FOREACH nested_alias {

   alias = {nested_op | nested_exp}; [{alias =
{nested_op | nested_exp}; …]

   GENERATE expression [AS schema] [expression
[AS schema]….]

};

Where:

The nested block is enclosed in opening and closing
brackets { … }.

The GENERATE keyword must be the last statement
within the nested block.

See Schemas

Macros are NOT alllowed inside a nested block.

expression An expression.

nested_alias The name of the inner bag.

nested_op Allowed operations are CROSS, DISTINCT,
FILTER, FOREACH, LIMIT, and ORDER BY.

Note: FOREACH statements can be nested to two
levels only. FOREACH statements that are nested to
three or more levels will result in a grammar error.

You can also perform projections within the nested
block.

For examples, see Example: Nested Block.

nested_exp Any arbitrary, supported expression.

AS Keyword

schema A schema using the AS keyword (see Schemas).

• If the FLATTEN operator is used, enclose the
schema in parentheses.

• If the FLATTEN operator is not used, don't
enclose the schema in parentheses.



Pig Latin Basics

Page 56Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.8.3 Usage

Use the FOREACH…GENERATE operation to work with columns of data (if you want to
work with tuples or rows of data, use the FILTER operation).

FOREACH...GENERATE works with relations (outer bags) as well as inner bags:

• If A is a relation (outer bag), a FOREACH statement could look like this.

X = FOREACH A GENERATE f1;

• If A is an inner bag, a FOREACH statement could look like this.

X = FOREACH B {
        S = FILTER A BY 'xyz';
        GENERATE COUNT (S.$0);
}

6.8.4 Example: Projection

In this example the asterisk (*) is used to project all fields from relation A to relation X.
Relation A and X are identical.

X = FOREACH A GENERATE *;

DUMP X;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

In this example two fields from relation A are projected to form relation X.

X = FOREACH A GENERATE a1, a2;

DUMP X;
(1,2)
(4,2)
(8,3)
(4,3)
(7,2)
(8,4)

6.8.5 Example: Nested Projection

In this example if one of the fields in the input relation is a tuple, bag or map, we can perform
a projection on that field (using a deference operator).



Pig Latin Basics

Page 57Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = FOREACH C GENERATE group, B.b2;

DUMP X;
(1,{(3)})
(4,{(6),(9)})
(8,{(9)})

In this example multiple nested columns are retained.

X = FOREACH C GENERATE group, A.(a1, a2);

DUMP X;
(1,{(1,2)})
(4,{(4,2),(4,3)})
(8,{(8,3),(8,4)})

6.8.6 Example: Schema

In this example two fields in relation A are summed to form relation X. A schema is defined
for the projected field.

X = FOREACH A GENERATE a1+a2 AS f1:int;

DESCRIBE X;
x: {f1: int}

DUMP X;
(3)
(6)
(11)
(7)
(9)
(12)

Y = FILTER X BY f1 > 10;

DUMP Y;
(11)
(12)

6.8.7 Example: Applying Functions

In this example the built in function SUM() is used to sum a set of numbers in a bag.

X = FOREACH C GENERATE group, SUM (A.a1);

DUMP X;
(1,1)
(4,8)
(8,16)



Pig Latin Basics

Page 58Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.8.8 Example: Flatten

In this example the FLATTEN operator is used to eliminate nesting.

X = FOREACH C GENERATE group, FLATTEN(A);

DUMP X;
(1,1,2,3)
(4,4,2,1)
(4,4,3,3)
(8,8,3,4)
(8,8,4,3)

Another FLATTEN example.

X = FOREACH C GENERATE GROUP, FLATTEN(A.a3);

DUMP X;
(1,3)
(4,1)
(4,3)
(8,4)
(8,3)

Another FLATTEN example. Note that for the group '4' in C, there are two tuples in each
bag. Thus, when both bags are flattened, the cross product of these tuples is returned; that is,
tuples (4, 2, 6), (4, 3, 6), (4, 2, 9), and (4, 3, 9).

X = FOREACH C GENERATE FLATTEN(A.(a1, a2)), FLATTEN(B.$1);

DUMP X;
(1,2,3)
(4,2,6)
(4,2,9)
(4,3,6)
(4,3,9)
(8,3,9)
(8,4,9)

Another FLATTEN example. Here, relations A and B both have a column x. When forming
relation E, you need to use the :: operator to identify which column x to use - either relation
A column x (A::x) or relation B column x (B::x). This example uses relation A column x
(A::x).

A = LOAD 'data' AS (x, y);
B = LOAD 'data' AS (x, z);
C = COGROUP A BY x, B BY x;
D = FOREACH C GENERATE flatten(A), flatten(b);
E = GROUP D BY A::x;
……



Pig Latin Basics

Page 59Copyright © 2007 The Apache Software Foundation. All rights reserved.

A FLATTEN example on a map type. Here we load an integer and map (of integer values)
into A. Then m gets flattened, and finally we are filtering the result to only include tuples
where the value among the un-nested map entries was 5.

A = LOAD 'data' AS (a:int, m:map[int]);
B = FOREACH A GENERATE a, FLATTEN(m);
C = FILTER B by m::value == 5;
……

6.8.9 Example: Nested Block

In this example a CROSS is performed within the nested block.

user = load 'user' as (uid, age, gender, region);
session = load 'session' as (uid, region);
C = cogroup user by uid, session by uid;
D = foreach C {
    crossed = cross user, session;
    generate crossed;
}
dump D;  

In this example FOREACH is nested to the second level.

a = load '1.txt' as (a0, a1:chararray, a2:chararray); 
b = group a by a0; 
c = foreach b { 
    c0 = foreach a generate TOMAP(a1,a2); 
    generate c0; 
} 
dump c; 

This example shows a CROSS and FOREACH nested to the second level.

a = load '1.txt' as (a0, a1, a2); 
b = load '2.txt' as (b0, b1); 
c = cogroup a by a0, b by b0; 
d = foreach c { 
    d0 = cross a, b; 
    d1 = foreach d0 generate a1+b1; 
    generate d1; 
} 
dump d;

Suppose we have relations A and B. Note that relation B contains an inner bag.

A = LOAD 'data' AS (url:chararray,outlink:chararray);

DUMP A;
(www.ccc.com,www.hjk.com)



Pig Latin Basics

Page 60Copyright © 2007 The Apache Software Foundation. All rights reserved.

(www.ddd.com,www.xyz.org)
(www.aaa.com,www.cvn.org)
(www.www.com,www.kpt.net)
(www.www.com,www.xyz.org)
(www.ddd.com,www.xyz.org)

B = GROUP A BY url;

DUMP B;
(www.aaa.com,{(www.aaa.com,www.cvn.org)})
(www.ccc.com,{(www.ccc.com,www.hjk.com)})
(www.ddd.com,{(www.ddd.com,www.xyz.org),(www.ddd.com,www.xyz.org)})
(www.www.com,{(www.www.com,www.kpt.net),(www.www.com,www.xyz.org)})

In this example we perform two of the operations allowed in a nested block, FILTER and
DISTINCT. Note that the last statement in the nested block must be GENERATE. Also, note
the use of projection (PA = FA.outlink;) to retrieve a field. DISTINCT can be applied to a
subset of fields (as opposed to a relation) only within a nested block.

X = FOREACH B {
        FA= FILTER A BY outlink == 'www.xyz.org';
        PA = FA.outlink;
        DA = DISTINCT PA;
        GENERATE group, COUNT(DA);
}

DUMP X;
(www.aaa.com,0)
(www.ccc.com,0)
(www.ddd.com,1)
(www.www.com,1)

6.9 GROUP

Groups the data in one or more relations.

Note: The GROUP and COGROUP operators are identical. Both operators work with one
or more relations. For readability GROUP is used in statements involving one relation and
COGROUP is used in statements involving two or more relations. You can COGROUP up to
but no more than 127 relations at a time.

6.9.1 Syntax

alias = GROUP alias { ALL | BY expression} [, alias ALL | BY expression …] [USING 'collected' | 'merge']
[PARTITION BY partitioner] [PARALLEL n];

6.9.2 Terms

alias The name of a relation.



Pig Latin Basics

Page 61Copyright © 2007 The Apache Software Foundation. All rights reserved.

You can COGROUP up to but no more than 127
relations at a time.

ALL Keyword. Use ALL if you want all tuples to go to a
single group; for example, when doing aggregates
across entire relations.

B = GROUP A ALL;

BY Keyword. Use this clause to group the relation by
field, tuple or expression.

B = GROUP A BY f1;

expression A tuple expression. This is the group key or key field.
If the result of the tuple expression is a single field,
the key will be the value of the first field rather than
a tuple with one field. To group using multiple keys,
enclose the keys in parentheses:

B = GROUP A BY (key1,key2);

USING Keyword

'collected' Use the ‘collected’ clause with the GROUP operation
(works with one relation only).

The following conditions apply:

• The loader must implement the
{CollectableLoader} interface.

• Data must be sorted on the group key.

If your data and loaders satisfy these conditions,
use the ‘collected’ clause to perform an optimized
version of GROUP; the operation will execute on the
map side and avoid running the reduce phase.

'merge' Use the ‘merge’ clause with the COGROUP
operation (works with two or more relations only).

The following conditions apply:

• No other operations can be done between the
LOAD and COGROUP statements.

• Data must be sorted on the COGROUP key for
all tables in ascending (ASC) order.

• Nulls are considered smaller than evertyhing. If
data contains null keys, they should occur before
anything else.

• Left-most loader must implement the
{CollectableLoader} interface as well as
{OrderedLoadFunc} interface.



Pig Latin Basics

Page 62Copyright © 2007 The Apache Software Foundation. All rights reserved.

• All other loaders must implement
IndexableLoadFunc.

• Type information must be provided in the
schema for all the loaders.

If your data and loaders satisfy these conditions, the
‘merge’ clause to perform an optimized version of
COGROUP; the operation will execute on the map
side and avoid running the reduce phase.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

• For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.9.3 Usage

The GROUP operator groups together tuples that have the same group key (key field).
The key field will be a tuple if the group key has more than one field, otherwise it will be
the same type as that of the group key. The result of a GROUP operation is a relation that
includes one tuple per group. This tuple contains two fields:

• The first field is named "group" (do not confuse this with the GROUP operator) and is
the same type as the group key.

• The second field takes the name of the original relation and is type bag.
• The names of both fields are generated by the system as shown in the example below.

Note the following about the GROUP/COGROUP and JOIN operators:

• The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates a flat set of output tuples

• The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and GROUP/COGROUP Operataors).

6.9.4 Example

Suppose we have relation A.

A = load 'student' AS (name:chararray,age:int,gpa:float);

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#Parallel


Pig Latin Basics

Page 63Copyright © 2007 The Apache Software Foundation. All rights reserved.

DESCRIBE A;
A: {name: chararray,age: int,gpa: float}

DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Bill,20,3.9F)
(Joe,18,3.8F)

Now, suppose we group relation A on field "age" for form relation B. We can use the
DESCRIBE and ILLUSTRATE operators to examine the structure of relation B. Relation
B has two fields. The first field is named "group" and is type int, the same as field "age" in
relation A. The second field is name "A"  after relation A and is type bag.

B = GROUP A BY age;

DESCRIBE B;
B: {group: int, A: {name: chararray,age: int,gpa: float}}

ILLUSTRATE B;
etc ... 
----------------------------------------------------------------------
| B     | group: int | A: bag({name: chararray,age: int,gpa: float}) |
----------------------------------------------------------------------
|       | 18         | {(John, 18, 4.0), (Joe, 18, 3.8)}             |
|       | 20         | {(Bill, 20, 3.9)}                             |
----------------------------------------------------------------------

DUMP B;
(18,{(John,18,4.0F),(Joe,18,3.8F)})
(19,{(Mary,19,3.8F)})
(20,{(Bill,20,3.9F)})

Continuing on, as shown in these FOREACH statements, we can refer to the fields in relation
B by names "group" and "A" or by positional notation.

C = FOREACH B GENERATE group, COUNT(A);

DUMP C;
(18,2L)
(19,1L)
(20,1L)

C = FOREACH B GENERATE $0, $1.name;

DUMP C;
(18,{(John),(Joe)})
(19,{(Mary)})
(20,{(Bill)})



Pig Latin Basics

Page 64Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.9.5 Example

Suppose we have relation A.

A = LOAD 'data' as (f1:chararray, f2:int, f3:int);

DUMP A;
(r1,1,2)
(r2,2,1)
(r3,2,8)
(r4,4,4)

In this example the tuples are grouped using an expression, f2*f3.

X = GROUP A BY f2*f3;

DUMP X;
(2,{(r1,1,2),(r2,2,1)})
(16,{(r3,2,8),(r4,4,4)})

6.9.6 Example

Suppose we have two relations, A and B.

A = LOAD 'data1' AS (owner:chararray,pet:chararray);

DUMP A;
(Alice,turtle)
(Alice,goldfish)
(Alice,cat)
(Bob,dog)
(Bob,cat)

B = LOAD 'data2' AS (friend1:chararray,friend2:chararray);

DUMP B;
(Cindy,Alice)
(Mark,Alice)
(Paul,Bob)
(Paul,Jane)

In this example tuples are co-grouped using field “owner” from relation A and field “friend2”
from relation B as the key fields. The DESCRIBE operator shows the schema for relation X,
which has three fields, "group", "A" and "B" (see the GROUP operator for information about
the field names).

X = COGROUP A BY owner, B BY friend2;

DESCRIBE X;



Pig Latin Basics

Page 65Copyright © 2007 The Apache Software Foundation. All rights reserved.

X: {group: chararray,A: {owner: chararray,pet: chararray},B: {friend1: chararray,friend2:
 chararray}}

Relation X looks like this. A tuple is created for each unique key field. The tuple includes the
key field and two bags. The first bag is the tuples from the first relation with the matching
key field. The second bag is the tuples from the second relation with the matching key field.
If no tuples match the key field, the bag is empty.

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})
(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})
(Jane,{},{(Paul,Jane)})

6.9.7 Example

This example shows how to group using multiple keys.

 A = LOAD 'allresults' USING PigStorage() AS (tcid:int, tpid:int, date:chararray,
 result:chararray, tsid:int, tag:chararray);
 B = GROUP A BY (tcid, tpid); 

6.9.8 Example: PARTITION BY

To use the Hadoop Partitioner add PARTITION BY clause to the appropriate operator:

A = LOAD 'input_data'; 
B = GROUP A BY $0 PARTITION BY org.apache.pig.test.utils.SimpleCustomPartitioner PARALLEL
 2;

Here is the code for SimpleCustomPartitioner:

public class SimpleCustomPartitioner extends Partitioner <PigNullableWritable, Writable> { 
     //@Override 
    public int getPartition(PigNullableWritable key, Writable value, int numPartitions) { 
        if(key.getValueAsPigType() instanceof Integer) { 
            int ret = (((Integer)key.getValueAsPigType()).intValue() % numPartitions); 
            return ret; 
       } 
       else { 
            return (key.hashCode()) % numPartitions; 
        } 
    } 
}

6.10 IMPORT

See IMPORT (macros)

cont.html#import-macros


Pig Latin Basics

Page 66Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.11 JOIN (inner)

Performs an inner join of two or more relations based on common field values.

6.11.1 Syntax

alias = JOIN alias BY {expression|'('expression [, expression …]')'} (, alias BY {expression|'('expression [,
expression …]')'} …) [USING 'replicated' | 'bloom' | 'skewed' | 'merge' | 'merge-sparse'] [PARTITION BY
partitioner] [PARALLEL n]; 

6.11.2 Terms

alias The name of a relation.

BY Keyword

expression A field expression.

Example: X = JOIN A BY fieldA, B BY fieldB, C
BY fieldC;

USING Keyword

'replicated' Use to perform replicated joins (see Replicated
Joins).

'bloom' Use to perform bloom joins (see Bloom Joins).

'skewed' Use to perform skewed joins (see Skewed Joins).

'merge' Use to perform merge joins (see Merge Joins).

'merge-sparse' Use to perform merge-sparse joins (see Merge-Sparse
Joins).

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

• For usage, see Example: PARTITION BY

This feature CANNOT be used with skewed joins.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

perf.html#replicated-joins
perf.html#replicated-joins
perf.html#bloom-joins
perf.html#skewed-joins
perf.html#merge-joins
perf.html#merge-sparse-joins
perf.html#merge-sparse-joins
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel


Pig Latin Basics

Page 67Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.11.3 Usage

Use the JOIN operator to perform an inner, equijoin join of two or more relations based on
common field values. Inner joins ignore null keys, so it makes sense to filter them out before
the join.

Note the following about the GROUP/COGROUP and JOIN operators:

• The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates a flat set of output tuples.

• The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and JOIN Operator).

Self Joins

To perform self joins in Pig load the same data multiple times, under different aliases, to
avoid naming conflicts.

In this example the same data is loaded twice using aliases A and B.

grunt> A = load 'mydata';
grunt> B = load 'mydata';
grunt> C = join A by $0, B by $0;
grunt> explain C;

6.11.4 Example

Suppose we have relations A and B.

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;
(2,4)
(8,9)
(1,3)
(2,7)
(2,9)
(4,6)
(4,9)

In this example relations A and B are joined by their first fields.



Pig Latin Basics

Page 68Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = JOIN A BY a1, B BY b1;

DUMP X;
(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(4,2,1,4,9)
(4,3,3,4,9)
(8,3,4,8,9)
(8,4,3,8,9)

6.12 JOIN (outer)

Performs an outer join of two relations based on common field values.

6.12.1 Syntax

alias = JOIN left-alias BY left-alias-column [LEFT|RIGHT|FULL] [OUTER], right-alias BY right-alias-
column [USING 'replicated' | 'bloom' | 'skewed' | 'merge'] [PARTITION BY partitioner] [PARALLEL n]; 

6.12.2 Terms

alias The name of a relation. Applies to alias, left-alias and
right-alias.

alias-column The name of the join column for the corresponding
relation. Applies to left-alias-column and right-alias-
column.

BY Keyword

LEFT Left outer join.

RIGHT Right outer join.

FULL Full outer join.

OUTER (Optional) Keyword

USING Keyword

'replicated' Use to perform replicated joins (see Replicated
Joins).

Only left outer join is supported for replicated joins.

'bloom' Use to perform bloom joins (see Bloom Joins).

Full outer join is not supported for bloom joins.

'skewed' Use to perform skewed joins (see Skewed Joins).

perf.html#replicated-joins
perf.html#replicated-joins
perf.html#bloom-joins
perf.html#skewed-joins


Pig Latin Basics

Page 69Copyright © 2007 The Apache Software Foundation. All rights reserved.

'merge' Use to perform merge joins (see Merge Joins).

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

• For usage, see Example: PARTITION BY

This feature CANNOT be used with skewed joins.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.12.3 Usage

Use the JOIN operator with the corresponding keywords to perform left, right, or full outer
joins. The keyword OUTER is optional for outer joins; the keywords LEFT, RIGHT and
FULL will imply left outer, right outer and full outer joins respectively when OUTER is
omitted. The Pig Latin syntax closely adheres to the SQL standard.

Please note the following:

• Outer joins will only work provided the relations which need to produce nulls (in the case
of non-matching keys) have schemas.

• Outer joins will only work for two-way joins; to perform a multi-way outer join, you will
need to perform multiple two-way outer join statements.

6.12.4 Examples

This example shows a left outer join.

A = LOAD 'a.txt' AS (n:chararray, a:int); 
B = LOAD 'b.txt' AS (n:chararray, m:chararray);
C = JOIN A by $0 LEFT OUTER, B BY $0;

This example shows a full outer join.

A = LOAD 'a.txt' AS (n:chararray, a:int); 
B = LOAD 'b.txt' AS (n:chararray, m:chararray);
C = JOIN A BY $0 FULL, B BY $0;

This example shows a replicated left outer join.

perf.html#merge-joins
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel


Pig Latin Basics

Page 70Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'large';
B = LOAD 'tiny';
C= JOIN A BY $0 LEFT, B BY $0 USING 'replicated';

This example shows a bloom right outer join.

A = LOAD 'large';
B = LOAD 'small';
C= JOIN A BY $0 RIGHT, B BY $0 USING 'bloom';

This example shows a skewed full outer join.

A = LOAD 'studenttab' as (name, age, gpa);
B = LOAD 'votertab' as (name, age, registration, contribution);
C = JOIN A BY name FULL, B BY name USING 'skewed';

6.13 LIMIT

Limits the number of output tuples.

6.13.1 Syntax

alias = LIMIT alias  n;

6.13.2 Terms

alias The name of a relation.

n The number of output tuples, either:

• a constant (for example, 3)
• a scalar used in an expression (for example,

c.sum/100)

Note: The expression can consist of constants or
scalars; it cannot contain any columns from the input
relation.

Note: Using a scalar instead of a constant in LIMIT
automatically disables most optimizations (only
push-before-foreach is performed).

6.13.3 Usage

Use the LIMIT operator to limit the number of output tuples.

If the specified number of output tuples is equal to or exceeds the number of tuples in the
relation, all tuples in the relation are returned.



Pig Latin Basics

Page 71Copyright © 2007 The Apache Software Foundation. All rights reserved.

If the specified number of output tuples is less than the number of tuples in the relation,
then n tuples are returned. There is no guarantee which n tuples will be returned, and the
tuples that are returned can change from one run to the next. A particular set of tuples can be
requested using the ORDER operator followed by LIMIT.

Note: The LIMIT operator allows Pig to avoid processing all tuples in a relation. In most
cases a query that uses LIMIT will run more efficiently than an identical query that does not
use LIMIT. It is always a good idea to use limit if you can.

6.13.4 Examples

In this example the limit is expressed as a scalar.

a = load 'a.txt';
b = group a all;
c = foreach b generate COUNT(a) as sum;
d = order a by $0;
e = limit d c.sum/100;

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

In this example output is limited to 3 tuples. Note that there is no guarantee which three
tuples will be output.

X = LIMIT A 3;

DUMP X;
(1,2,3)
(4,3,3)
(7,2,5)

In this example the ORDER operator is used to order the tuples and the LIMIT operator is
used to output the first three tuples.

B = ORDER A BY f1 DESC, f2 ASC;

DUMP B;
(8,3,4) 
(8,4,3) 



Pig Latin Basics

Page 72Copyright © 2007 The Apache Software Foundation. All rights reserved.

(7,2,5) 
(4,2,1)
(4,3,3)
(1,2,3)

X = LIMIT B 3;

DUMP X;
(8,3,4)
(8,4,3) 
(7,2,5) 

6.14 LOAD

Loads data from the file system.

6.14.1 Syntax

LOAD 'data' [USING function] [AS schema];       

6.14.2 Terms

'data' The name of the file or directory, in single quotes.

If you specify a directory name, all the files in the
directory are loaded.

You can use Hadoop globing to specify files at
the file system or directory levels (see Hadoop
globStatus for details on globing syntax).

Note: Pig uses Hadoop globbing so the functionality
is IDENTICAL. However, when you run from the
command line using the Hadoop fs command (rather
than the Pig LOAD operator), the Unix shell may
do some of the substitutions; this could alter the
outcome giving the impression that globing works
differently for Pig and Hadoop. For example:

• This works
hadoop fs -ls /
mydata/20110423{00,01,02,03,04,05,06,07,08,09,
{10..23}}00//part

• This does not work
LOAD '/
mydata/20110423{00,01,02,03,04,05,06,07,08,09,
{10..23}}00//part '

USING Keyword.

If the USING clause is omitted, the default load
function PigStorage is used.

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)


Pig Latin Basics

Page 73Copyright © 2007 The Apache Software Foundation. All rights reserved.

function The load function.

• You can use a built in function (see Load/
Store Functions). PigStorage is the default
load function and does not need to be specified
(simply omit the USING clause).

• You can write your own load function if your
data is in a format that cannot be processed
by the built in functions (see User Defined
Functions).

AS Keyword.

schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

The loader produces the data of the type specified
by the schema. If the data does not conform to the
schema, depending on the loader, either a null value
or an error is generated.

Note: For performance reasons the loader may not
immediately convert the data to the specified format;
however, you can still operate on the data assuming
the specified type.

6.14.3 Usage

Use the LOAD operator to load data from the file system.

6.14.4 Examples

Suppose we have a data file called myfile.txt. The fields are tab-delimited. The records are
newline-separated.

1 2 3
4 2 1
8 3 4

In this example the default load function, PigStorage, loads data from myfile.txt to form
relation A. The two LOAD statements are equivalent. Note that, because no schema is
specified, the fields are not named and all fields default to type bytearray.

A = LOAD 'myfile.txt';

A = LOAD 'myfile.txt' USING PigStorage('\t');

DUMP A;
(1,2,3)
(4,2,1)

func.html#load-store-functions
func.html#load-store-functions
udf.html
udf.html


Pig Latin Basics

Page 74Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,3,4)

In this example a schema is specified using the AS keyword. The two LOAD statements are
equivalent. You can use the DESCRIBE and ILLUSTRATE operators to view the schema.

A = LOAD 'myfile.txt' AS (f1:int, f2:int, f3:int);

A = LOAD 'myfile.txt' USING PigStorage('\t') AS (f1:int, f2:int, f3:int);

DESCRIBE A;
a: {f1: int,f2: int,f3: int}

ILLUSTRATE A;
---------------------------------------------------------
| a     | f1: bytearray | f2: bytearray | f3: bytearray |
---------------------------------------------------------
|       | 4             | 2             | 1             |
---------------------------------------------------------

---------------------------------------
| a     | f1: int | f2: int | f3: int |
---------------------------------------
|       | 4       | 2       | 1       |
---------------------------------------

For examples of how to specify more complex schemas for use with the LOAD operator, see
Schemas for Complex Data Types and Schemas for Multiple Types.

6.15 NATIVE

Executes native MapReduce/Tez jobs inside a Pig script.

6.15.1 Syntax

alias1 = NATIVE 'native.jar' STORE alias2 INTO 'inputLocation' USING storeFunc LOAD 'outputLocation'
USING loadFunc AS schema [`params, ... `];

6.15.2 Terms

alias1, alias2 The names of relations.

native.jar The jar file containing MapReduce or Tez program
(enclosed in single quotes).

You can specify any MapReduce/Tez jar file that can
be run through the hadoop jar native.jar
params command.

The values for inputLocation and outputLocation can
be passed in the params.

STORE ... INTO ... USING See STORE

basic.html#store


Pig Latin Basics

Page 75Copyright © 2007 The Apache Software Foundation. All rights reserved.

Store alias2 into the inputLocation using storeFunc,
which is then used by the MapReduce/Tez job to read
its data.

LOAD ... USING ... AS See LOAD

After running native.jar's MapReduce/Tez job, load
back the data from outputLocation into alias1 using
loadFunc as schema.

`params, ...` Extra parameters required for the mapreduce/tez job
(enclosed in back tics).

6.15.3 Usage

Use the NATIVE operator to run native MapReduce/Tez jobs from inside a Pig script.

The input and output locations for the MapReduce/Tez program are conveyed to Pig using
the STORE/LOAD clauses. Pig, however, does not pass this information (nor require that
this information be passed) to the MapReduce/Tez program. If you want to pass the input and
output locations to the MapReduce/Tez program you can use the params clause or you can
hardcode the locations in the MapReduce/Tez program.

6.15.4 Example

This example demonstrates how to run the wordcount MapReduce progam from Pig. Note
that the files specified as input and output locations in the NATIVE statement will NOT be
deleted by Pig automatically. You will need to delete them manually.

A = LOAD 'WordcountInput.txt';
B = NATIVE 'wordcount.jar' STORE A INTO 'inputDir' LOAD 'outputDir'
    AS (word:chararray, count: int) `org.myorg.WordCount inputDir outputDir`;

6.16 ORDER BY

Sorts a relation based on one or more fields.

6.16.1 Syntax

alias = ORDER alias BY { * [ASC|DESC] | field_alias [ASC|DESC] [, field_alias [ASC|DESC] …] }
[PARALLEL n];

6.16.2 Terms

alias The name of a relation.

* The designator for a tuple.

basic.html#load


Pig Latin Basics

Page 76Copyright © 2007 The Apache Software Foundation. All rights reserved.

field_alias A field in the relation. The field must be a simple
type.

ASC Sort in ascending order.

DESC Sort in descending order.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.16.3 Usage

Note: ORDER BY is NOT stable; if multiple records have the same ORDER BY key, the
order in which these records are returned is not defined and is not guarantted to be the same
from one run to the next.

In Pig, relations are unordered (see Relations, Bags, Tuples, Fields):

• If you order relation A to produce relation X (X = ORDER A BY * DESC;) relations A
and X still contain the same data.

• If you retrieve relation X (DUMP X;) the data is guaranteed to be in the order you
specified (descending).

• However, if you further process relation X (Y = FILTER X BY $0 > 1;) there is
no guarantee that the data will be processed in the order you originally specified
(descending).

Pig currently supports ordering on fields with simple types or by tuple designator (*). You
cannot order on fields with complex types or by expressions.

A = LOAD 'mydata' AS (x: int, y: map[]);     
B = ORDER A BY x; -- this is allowed because x is a simple type
B = ORDER A BY y; -- this is not allowed because y is a complex type
B = ORDER A BY y#'id'; -- this is not allowed because y#'id' is an expression

6.16.4 Examples

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)

perf.html#parallel


Pig Latin Basics

Page 77Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,4,3)

In this example relation A is sorted by the third field, f3 in descending order. Note that the
order of the three tuples ending in 3 can vary.

X = ORDER A BY a3 DESC;

DUMP X;
(7,2,5)
(8,3,4)
(1,2,3)
(4,3,3)
(8,4,3)
(4,2,1)

6.17 RANK

Returns each tuple with the rank within a relation.

6.17.1 Syntax

alias = RANK alias [ BY { * [ASC|DESC] | field_alias [ASC|DESC] [, field_alias [ASC|DESC] …] }
[DENSE] ];

6.17.2 Terms

alias The name of a relation.

* The designator for a tuple.

field_alias A field in the relation. The field must be a simple
type.

ASC Sort in ascending order.

DESC Sort in descending order.

DENSE No gap in the ranking values.

6.17.3 Usage

When specifying no field to sort on, the RANK operator simply prepends a sequential value
to each tuple.

Otherwise, the RANK operator uses each field (or set of fields) to sort the relation. The rank
of a tuple is one plus the number of different rank values preceding it. If two or more tuples
tie on the sorting field values, they will receive the same rank.

NOTE: When using the option DENSE, ties do not cause gaps in ranking values.



Pig Latin Basics

Page 78Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.17.4 Examples

Suppose we have relation A.

A = load 'data' AS (f1:chararray,f2:int,f3:chararray);
   
DUMP A;
(David,1,N)
(Tete,2,N)
(Ranjit,3,M)
(Ranjit,3,P)
(David,4,Q)
(David,4,Q)
(Jillian,8,Q)
(JaePak,7,Q)
(Michael,8,T)
(Jillian,8,Q)
(Jose,10,V)
            

In this example, the RANK operator does not change the order of the relation and simply
prepends to each tuple a sequential value.

B = rank A;

dump B;
(1,David,1,N)
(2,Tete,2,N)
(3,Ranjit,3,M)
(4,Ranjit,3,P)
(5,David,4,Q)
(6,David,4,Q)
(7,Jillian,8,Q)
(8,JaePak,7,Q)
(9,Michael,8,T)
(10,Jillian,8,Q)
(11,Jose,10,V)
            

In this example, the RANK operator works with f1 and f2 fields, and each one with different
sorting order. RANK sorts the relation on these fields and prepends the rank value to each
tuple. Otherwise, the RANK operator uses each field (or set of fields) to sort the relation. The
rank of a tuple is one plus the number of different rank values preceding it. If two or more
tuples tie on the sorting field values, they will receive the same rank.

C = rank A by f1 DESC, f2 ASC;
                                
dump C;
(1,Tete,2,N)
(2,Ranjit,3,M)
(2,Ranjit,3,P)
(4,Michael,8,T)



Pig Latin Basics

Page 79Copyright © 2007 The Apache Software Foundation. All rights reserved.

(5,Jose,10,V)
(6,Jillian,8,Q)
(6,Jillian,8,Q)
(8,JaePak,7,Q)
(9,David,1,N)
(10,David,4,Q)
(10,David,4,Q)                
            

Same example as previous, but DENSE. In this case there are no gaps in ranking values.

C = rank A by f1 DESC, f2 ASC DENSE;

dump C;
(1,Tete,2,N)
(2,Ranjit,3,M)
(2,Ranjit,3,P)
(3,Michael,8,T)
(4,Jose,10,V)
(5,Jillian,8,Q)
(5,Jillian,8,Q)
(6,JaePak,7,Q)
(7,David,1,N)
(8,David,4,Q)
(8,David,4,Q)
            

6.18 SAMPLE

Selects a random sample of data based on the specified sample size.

6.18.1 Syntax

SAMPLE alias size;

6.18.2 Terms

alias The name of a relation.

size Sample size, either

• a constant, range 0 to 1 (for example, enter 0.1
for 10%)

• a scalar used in an expression

Note: The expression can consist of constants or
scalars; it cannot contain any columns from the input
relation.



Pig Latin Basics

Page 80Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.18.3 Usage

Use the SAMPLE operator to select a random data sample with the stated sample size.
SAMPLE is a probabalistic operator; there is no guarantee that the exact same number of
tuples will be returned for a particular sample size each time the operator is used.

6.18.4 Example

In this example relation X will contain 1% of the data in relation A.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

X = SAMPLE A 0.01;

In this example, a scalar expression is used (it will sample approximately 1000 records from
the input).

a = LOAD 'a.txt';
b = GROUP a ALL;
c = FOREACH b GENERATE COUNT_STAR(a) AS num_rows;
d = SAMPLE a (double)1000/c.num_rows;

6.19 SPLIT

Partitions a relation into two or more relations.

6.19.1 Syntax

SPLIT alias INTO alias IF expression, alias IF expression [, alias IF expression …] [, alias OTHERWISE];

6.19.2 Terms

alias The name of a relation.

INTO Required keyword.

IF Required keyword.

expression An expression.

OTHERWISE Optional keyword. Designates a default relation.

6.19.3 Usage

Use the SPLIT operator to partition the contents of a relation into two or more relations based
on some expression. Depending on the conditions stated in the expression:



Pig Latin Basics

Page 81Copyright © 2007 The Apache Software Foundation. All rights reserved.

• A tuple may be assigned to more than one relation.
• A tuple may not be assigned to any relation.

6.19.4 Example

In this example relation A is split into three relations, X, Y, and Z.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;                
(1,2,3)
(4,5,6)
(7,8,9)        

SPLIT A INTO X IF f1<7, Y IF f2==5, Z IF (f3<6 OR f3>6);

DUMP X;
(1,2,3)
(4,5,6)

DUMP Y;
(4,5,6)

DUMP Z;
(1,2,3)
(7,8,9)

6.19.5 Example

In this example, the SPLIT and FILTER statements are essentially equivalent. However,
because SPLIT is implemented as "split the data stream and then apply filters" the SPLIT
statement is more expensive than the FILTER statement because Pig needs to filter and store
two data streams.

SPLIT input_var INTO output_var IF (field1 is not null), ignored_var IF (field1 is null);  
-- where ignored_var is not used elsewhere
   
output_var = FILTER input_var BY (field1 is not null);
   

6.20 STORE

Stores or saves results to the file system.

6.20.1 Syntax

STORE alias INTO 'directory' [USING function];



Pig Latin Basics

Page 82Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.20.2 Terms

alias The name of a relation.

INTO Required keyword.

'directory' The name of the storage directory, in quotes. If the
directory already exists, the STORE operation will
fail.

The output data files, named part-nnnnn, are written
to this directory.

USING Keyword. Use this clause to name the store function.

If the USING clause is omitted, the default store
function PigStorage is used.

function The store function.

• You can use a built in function (see the Load/
Store Functions). PigStorage is the default
store function and does not need to be specified
(simply omit the USING clause).

• You can write your own store function if your
data is in a format that cannot be processed
by the built in functions (see User Defined
Functions).

6.20.3 Usage

Use the STORE operator to run (execute) Pig Latin statements and save (persist) results to
the file system. Use STORE for production scripts and batch mode processing.

Note: To debug scripts during development, you can use DUMP to check intermediate
results.

6.20.4 Examples

In this example data is stored using PigStorage and the asterisk character (*) as the field
delimiter.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

func.html#load-store-functions
func.html#load-store-functions
udf.html
udf.html
test.html#dump


Pig Latin Basics

Page 83Copyright © 2007 The Apache Software Foundation. All rights reserved.

STORE A INTO 'myoutput' USING PigStorage ('*');

CAT myoutput;
1*2*3
4*2*1
8*3*4
4*3*3
7*2*5
8*4*3

In this example, the CONCAT function is used to format the data before it is stored.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = FOREACH A GENERATE CONCAT('a:',(chararray)f1), CONCAT('b:',(chararray)f2), CONCAT('c:',
(chararray)f3);

DUMP B;
(a:1,b:2,c:3)
(a:4,b:2,c:1)
(a:8,b:3,c:4)
(a:4,b:3,c:3)
(a:7,b:2,c:5)
(a:8,b:4,c:3)

STORE B INTO 'myoutput' using PigStorage(',');

CAT myoutput;
a:1,b:2,c:3
a:4,b:2,c:1
a:8,b:3,c:4
a:4,b:3,c:3
a:7,b:2,c:5
a:8,b:4,c:3

6.21 STREAM

Sends data to an external script or program.

6.21.1 Syntax

alias = STREAM alias [, alias …] THROUGH {`command` | cmd_alias } [AS schema] ;



Pig Latin Basics

Page 84Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.21.2 Terms

alias The name of a relation.

THROUGH Keyword.

`command` A command, including the arguments, enclosed in
back tics (where a command is anything that can be
executed).

cmd_alias The name of a command created using the DEFINE
operator (see DEFINE (UDFs, streaming) for
additional streaming examples).

AS Keyword.

schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

6.21.3 Usage

Use the STREAM operator to send data through an external script or program. Multiple
stream operators can appear in the same Pig script. The stream operators can be adjacent to
each other or have other operations in between.

When used with a command, a stream statement could look like this:

A = LOAD 'data';

B = STREAM A THROUGH `stream.pl -n 5`;

When used with a cmd_alias, a stream statement could look like this, where mycmd is the
defined alias.

A = LOAD 'data';

DEFINE mycmd `stream.pl –n 5`;

B = STREAM A THROUGH mycmd;

6.21.4 About Data Guarantees

Data guarantees are determined based on the position of the streaming operator in the Pig
script.

• Unordered data – No guarantee for the order in which the data is delivered to the
streaming application.



Pig Latin Basics

Page 85Copyright © 2007 The Apache Software Foundation. All rights reserved.

• Grouped data – The data for the same grouped key is guaranteed to be provided to the
streaming application contiguously

• Grouped and ordered data – The data for the same grouped key is guaranteed to be
provided to the streaming application contiguously. Additionally, the data within the
group is guaranteed to be sorted by the provided secondary key.

In addition to position, data grouping and ordering can be determined by the data itself.
However, you need to know the property of the data to be able to take advantage of its
structure.

6.21.5 Example: Data Guarantees

In this example the data is unordered.

A = LOAD 'data';

B = STREAM A THROUGH `stream.pl`;

In this example the data is grouped.

A = LOAD 'data';

B = GROUP A BY $1;

C = FOREACH B FLATTEN(A);

D = STREAM C THROUGH `stream.pl`;

In this example the data is grouped and ordered.

A = LOAD 'data';

B = GROUP A BY $1;

C = FOREACH B {
      D = ORDER A BY ($3, $4);
      GENERATE D;
}

E = STREAM C THROUGH `stream.pl`;

6.21.6 Example: Schemas

In this example a schema is specified as part of the STREAM statement.

X = STREAM A THROUGH `stream.pl` as (f1:int, f2:int, f3:int);



Pig Latin Basics

Page 86Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.22 UNION

Computes the union of two or more relations.

6.22.1 Syntax

alias = UNION [ONSCHEMA] alias, alias [, alias …] [PARALLEL n];

6.22.2 Terms

alias The name of a relation.

ONSCHEMA Use the ONSCHEMA clause to base the union on
named fields (rather than positional notation). All
inputs to the union must have a non-unknown (non-
null) schema.

PARALLEL n This is only applicable for Tez execution mode and
will not work with Mapreduce mode. Specifying
PARALLEL will introduce an extra reduce step
that will slightly degrade performance. The primary
purpose in this case is to control the number of output
files.

For more information, see Use the Parallel Features.

6.22.3 Usage

Use the UNION operator to merge the contents of two or more relations. The UNION
operator:

• Does not preserve the order of tuples. Both the input and output relations are interpreted
as unordered bags of tuples.

• Does not ensure (as databases do) that all tuples adhere to the same schema or that they
have the same number of fields. In a typical scenario, however, this should be the case;
therefore, it is the user's responsibility to either (1) ensure that the tuples in the input
relations have the same schema or (2) be able to process varying tuples in the output
relation.

• Does not eliminate duplicate tuples.

Schema Behavior

The behavior of schemas for UNION (positional notation / data types) and UNION
ONSCHEMA (named fields / data types) is the same, except where noted.

Union on relations with two different sizes result in a null schema (union only):

perf.html#parallel


Pig Latin Basics

Page 87Copyright © 2007 The Apache Software Foundation. All rights reserved.

A: (a1:long, a2:long) 
B: (b1:long, b2:long, b3:long) 
A union B: null 

Union columns with incompatible types results in a failure. (See Types Table for addition
and subtraction for incompatible types.)

A: (a1:long)
B: (a1:chararray)
A union B: ERROR: Cannot cast from long to bytearray

Union columns of compatible type will produce an "escalate" type. The priority is:

• double > float > long > int > bytearray
• tuple|bag|map|chararray > bytearray

A: (a1:int, a2:bytearray, a3:int) 
B: (b1:float, b2:chararray, b3:bytearray) 
A union B: (a1:float, a2:chararray, a3:int) 

Union of different inner types results in an empty complex type:

A: (a1:(a11:long, a12:int), a2:{(a21:charray, a22:int)}) 
B: (b1:(b11:int, b12:int), b2:{(b21:int, b22:int)}) 
A union B: (a1:(), a2:{()}) 

The alias of the first relation is always taken as the alias of the unioned relation field.

6.22.4 Example

In this example the union of relation A and B is computed.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)

B = LOAD 'data' AS (b1:int,b2:int);

DUMP A;
(2,4)
(8,9)
(1,3)

X = UNION A, B;

DUMP X;
(1,2,3)
(4,2,1)
(2,4)



Pig Latin Basics

Page 88Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,9)
(1,3)

6.22.5 Example

This example shows the use of ONSCHEMA.

L1 = LOAD 'f1' USING (a : int, b : float);
DUMP L1;
(11,12.0)
(21,22.0)

L2 = LOAD  'f1' USING (a : long, c : chararray);
DUMP L2;
(11,a)
(12,b)
(13,c)

U = UNION ONSCHEMA L1, L2;
DESCRIBE U ;
U : {a : long, b : float, c : chararray}

DUMP U;
(11,12.0,)
(21,22.0,)
(11,,a)
(12,,b)
(13,,c)

7 UDF Statements

7.1 DEFINE (UDFs, streaming)

Assigns an alias to a UDF or streaming command.

7.1.1 Syntax: UDF and streaming

DEFINE alias {function | [`command` [input] [output] [ship] [cache] [stderr] ] };

7.1.2 Terms

alias The name for a UDF function or the name for a
streaming command (the cmd_alias for the STREAM
operator).

function For use with functions.

The name of a UDF function.

`command` For use with streaming.



Pig Latin Basics

Page 89Copyright © 2007 The Apache Software Foundation. All rights reserved.

A command, including the arguments, enclosed in
back tics (where a command is anything that can be
executed).

The clauses (input, output, ship, cache, stderr) are
described below. Note the following:

• All clauses are optional.
• The clauses can be specified in any order (for

example, stderr can appear before input)
• Each clause can be specified at most once (for

example, multiple inputs are not allowed)

input For use with streaming.

INPUT ( {stdin | 'path'} [USING serializer] [, {stdin |
'path'} [USING serializer] …] )

Where:

• INPUT – Keyword.
• 'path' – A file path, enclosed in single quotes.
• USING – Keyword.
• serializer – PigStreaming is the default serializer.

output For use with streaming.

OUTPUT ( {stdout | stderr | 'path'} [USING
deserializer] [, {stdout | stderr | 'path'} [USING
deserializer] …] )

Where:

• OUTPUT – Keyword.
• 'path' – A file path, enclosed in single quotes.
• USING – Keyword.
• deserializer – PigStreaming is the default

deserializer.

ship For use with streaming.

SHIP('path' [, 'path' …])

Where:

• SHIP – Keyword.
• 'path' – A file path, enclosed in single quotes.

cache For use with streaming.

CACHE('dfs_path#dfs_file' [, 'dfs_path#dfs_file' …])

Where:

• CACHE – Keyword.



Pig Latin Basics

Page 90Copyright © 2007 The Apache Software Foundation. All rights reserved.

• 'dfs_path#dfs_file' – A file path/file name on the
distributed file system, enclosed in single quotes.
Example: '/mydir/mydata.txt#mydata.txt'

stderr For use with streaming.

STDERR( '/dir') or STDERR( '/dir' LIMIT n)

Where:

• '/dir' is the log directory, enclosed in single
quotes.

• (optional) LIMIT n is the error threshold where
n is an integer value. If not specified, the default
error threshold is unlimited.

7.1.3 Usage

Use the DEFINE statement to assign a name (alias) to a UDF function or to a streaming
command.

Use DEFINE to specify a UDF function when:

• The function has a long package name that you don't want to include in a script,
especially if you call the function several times in that script.

• The constructor for the function takes string parameters. If you need to use different
constructor parameters for different calls to the function you will need to create multiple
defines – one for each parameter set.

Use DEFINE to specify a streaming command when:

• The streaming command specification is complex.
• The streaming command specification requires additional parameters (input, output, and

so on).

7.1.3.1 About Input and Output for Streaming

Serialization is needed to convert data from tuples to a format that can be processed by the
streaming application. Deserialization is needed to convert the output from the streaming
application back into tuples. PigStreaming is the default serialization/deserialization function.

Streaming uses the same default format as PigStorage to serialize/deserialize the data. If you
want to explicitly specify a format, you can do it as show below (see more examples in the
Examples: Input/Output section).

DEFINE CMD `perl PigStreaming.pl - nameMap` input(stdin using PigStreaming(','))
 output(stdout using PigStreaming(','));
A = LOAD 'file';
B = STREAM B THROUGH CMD;



Pig Latin Basics

Page 91Copyright © 2007 The Apache Software Foundation. All rights reserved.

If you need an alternative format, you will need to create a custom serializer/deserializer by
implementing the following interfaces.

interface PigToStream {

    /**
     * Given a tuple, produce an array of bytes to be passed to the streaming
     * executable.
     */
    public byte[] serialize(Tuple t) throws IOException;
}

interface StreamToPig {

    /**
     *  Given a byte array from a streaming executable, produce a tuple.
     */
    public Tuple deserialize(byte[]) throws IOException;

    /**
     * This will be called on both the front end and the back
     * end during execution.
     *
     * @return the {@link LoadCaster} associated with this object.
     * @throws IOException if there is an exception during LoadCaster
     */
    public LoadCaster getLoadCaster() throws IOException;
}

7.1.3.2 About Ship

Use the ship option to send streaming binary and supporting files, if any, from the client node
to the compute nodes. Pig does not automatically ship dependencies; it is your responsibility
to explicitly specify all the dependencies and to make sure that the software the processing
relies on (for instance, perl or python) is installed on the cluster. Supporting files are shipped
to the task's current working directory and only relative paths should be specified. Any pre-
installed binaries should be specified in the PATH.

Only files, not directories, can be specified with the ship option. One way to work around
this limitation is to tar all the dependencies into a tar file that accurately reflects the
structure needed on the compute nodes, then have a wrapper for your script that un-tars the
dependencies prior to execution.

Note that the ship option has two components: the source specification, provided in the
ship( ) clause, is the view of your machine; the command specification is the view of the
actual cluster. The only guarantee is that the shipped files are available in the current working
directory of the launched job and that your current working directory is also on the PATH
environment variable.



Pig Latin Basics

Page 92Copyright © 2007 The Apache Software Foundation. All rights reserved.

Shipping files to relative paths or absolute paths is not supported since you might not have
permission to read/write/execute from arbitrary paths on the clusters.

Note the following:

• It is safe only to ship files to be executed from the current working directory on the task
on the cluster.

OP = stream IP through 'script';
or
DEFINE CMD 'script' ship('/a/b/script');
OP = stream IP through CMD;

• Shipping files to relative paths or absolute paths is undefined and mostly will fail since
you may not have permissions to read/write/execute from arbitraty paths on the actual
clusters.

7.1.3.3 About Cache

The ship option works with binaries, jars, and small datasets. However, loading larger
datasets at run time for every execution can severely impact performance. Instead, use the
cache option to access large files already moved to and available on the compute nodes. Only
files, not directories, can be specified with the cache option.

7.1.3.4 About Auto-Ship

If the ship and cache options are not specified, Pig will attempt to auto-ship the binary in the
following way:

• If the first word on the streaming command is perl or python, Pig assumes that the binary
is the first non-quoted string it encounters that does not start with dash.

• Otherwise, Pig will attempt to ship the first string from the command line as long as it
does not come from /bin, /usr/bin, /usr/local/bin. Pig will determine this
by scanning the path if an absolute path is provided or by executing which. The paths
can be made configurable using the set stream.skippath option (you can use multiple set
commands to specify more than one path to skip).

If you don't supply a DEFINE for a given streaming command, then auto-shipping is turned
off.

Note the following:

• If Pig determines that it needs to auto-ship an absolute path it will not ship it at all since
there is no way to ship files to the necessary location (lack of permissions and so on).

OP = stream IP through `/a/b/c/script`;
or 

cmds.html#set


Pig Latin Basics

Page 93Copyright © 2007 The Apache Software Foundation. All rights reserved.

OP = stream IP through `perl /a/b/c/script.pl`;

• Pig will not auto-ship files in the following system directories (this is determined by
executing 'which <file>' command).

/bin /usr/bin /usr/local/bin /sbin /usr/sbin /usr/local/sbin

• To auto-ship, the file in question should be present in the PATH. So if the file is in the
current working directory then the current working directory should be in the PATH.

7.1.4 Examples: Input/Output

In this example PigStreaming is the default serialization/deserialization function. The tuples
from relation A are converted to tab-delimited lines that are passed to the script.

X = STREAM A THROUGH `stream.pl`;

In this example PigStreaming is used as the serialization/deserialization function, but a
comma is used as the delimiter.

DEFINE Y 'stream.pl' INPUT(stdin USING PigStreaming(',')) OUTPUT (stdout USING
 PigStreaming(','));

X = STREAM A THROUGH Y;

In this example user defined serialization/deserialization functions are used with the script.

DEFINE Y 'stream.pl' INPUT(stdin USING MySerializer) OUTPUT (stdout USING MyDeserializer);

X = STREAM A THROUGH Y;

7.1.5 Examples: Ship/Cache

In this example ship is used to send the script to the cluster compute nodes.

DEFINE Y 'stream.pl' SHIP('/work/stream.pl');

X = STREAM A THROUGH Y;

In this example cache is used to specify a file located on the cluster compute nodes.

DEFINE Y 'stream.pl data.gz' SHIP('/work/stream.pl') CACHE('/input/data.gz#data.gz');

X = STREAM A THROUGH Y;



Pig Latin Basics

Page 94Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.1.6 Example: DEFINE with STREAM

In this example a command is defined for use with the STREAM operator.

A = LOAD 'data';

DEFINE mycmd 'stream_cmd –input file.dat';

B = STREAM A through mycmd;

7.1.7 Examples: Logging

In this example the streaming stderr is stored in the _logs/<dir> directory of the job's output
directory. Because the job can have multiple streaming applications associated with it, you
need to ensure that different directory names are used to avoid conflicts. Pig stores up to 100
tasks per streaming job.

DEFINE Y 'stream.pl' stderr('<dir>' limit 100);

X = STREAM A THROUGH Y;

7.1.8 Examples: DEFINE a function

In this example a function is defined for use with the FOREACH …GENERATE operator.

REGISTER /src/myfunc.jar

DEFINE myFunc myfunc.MyEvalfunc('foo');

A = LOAD 'students';

B = FOREACH A GENERATE myFunc($0);

7.2 REGISTER (a jar/script)

Registers a JAR file so that the UDFs in the file can be used.

7.2.1 Syntax

REGISTER path;

7.2.2 Terms

path The path to the JAR file (the full location URI is
required). Do not place the name in quotes.



Pig Latin Basics

Page 95Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.2.3 Usage

Pig Scripts

Use the REGISTER statement inside a Pig script to specify a JAR file or a Python/JavaScript
module. Pig supports JAR files and modules stored in local file systems as well as remote,
distributed file systems such as HDFS and Amazon S3 (see Pig Scripts).

Additionally, JAR files stored in local file systems can be specified as a glob pattern using
“*”. Pig will search for matching jars in the local file system, either the relative path (relative
to your working directory) or the absolute path. Pig will pick up all JARs that match the glob.

Command Line

You can register additional files (to use with your Pig script) via PIG_OPTS environment
variable using the -Dpig.additional.jars.uris option. For more information see User Defined
Functions.

7.2.4 Examples

In this example REGISTER states that the JavaScript module, myfunc.js, is located in the /
src directory.

/src $ java -jar pig.jar –

REGISTER /src/myfunc.js;
A = LOAD 'students';
B = FOREACH A GENERATE myfunc.MyEvalFunc($0);

In this example additional JAR files are registered via PIG_OPTS environment variable.

export PIG_OPTS="-Dpig.additional.jars.uris=my.jar,your.jar"

In this example a JAR file stored in HDFS and a local JAR file are registered.

export PIG_OPTS="-Dpig.additional.jars.uris=hdfs://nn.mydomain.com:9020/myjars/
my.jar,file:///home/root/pig/your.jar"

Note, the legacy property pig.additional.jars which use colon as separator is still supported.
But we recommend to use pig.additional.jars.uris since colon is also used in URL scheme,
and thus we cannot use full scheme in the list. We will deprecate pig.additional.jar in future
releases.

This example shows how to specify a glob pattern using either a relative path or an absolute
path.

register /homes/user/pig/myfunc*.jar

start.html#pig-scripts
udf.html
udf.html


Pig Latin Basics

Page 96Copyright © 2007 The Apache Software Foundation. All rights reserved.

register count*.jar
register jars/*.jar

7.3 REGISTER (an artifact)

Instead of figuring out the dependencies manually, downloading them and registering each
jar using the above register command, you can specify the artifact's coordinates and expect
pig to automatically fetch the required dependencies, download and register them.

7.3.1 Syntax

To download an Artifact (and its dependencies), you need to specify the artifact's group,
module and version following the syntax shown below. This command will download the Jar
specified and all its dependencies and load it into the classpath.

REGISTER ivy://group:module:version?querystring

7.3.2 Terms

group Which module group the module comes from.
Translates directly to a Maven groupId or an Ivy
Organization.

module The name of the module to load. Translated directly
to a Maven artifactId or an Ivy artifact.

version The version of the module to use. You can specify
a specific version or use "+" or "*" to use the latest
version.

querystring This will contain "&" separated key-value pairs to
help us exclude all or specific dependencies etc.

7.3.3 Usage

The Register artifact command is an extension to the above register command used to
register a jar. In addition to registering a jar from a local system or from hdfs, you can now
specify the coordinates of the artifact and pig will download the artifact (and its dependencies
if needed) from the configured repository.

7.3.3.1 Parameters Supported in the Query String

• Transitive

Transitive helps specifying if you need the dependencies along with the registering jar.
By setting transitive to false in the querystring we can tell pig to register only the artifact



Pig Latin Basics

Page 97Copyright © 2007 The Apache Software Foundation. All rights reserved.

without its dependencies. This will download only the artifact specified and will not
download the dependencies of the jar. The default value of transitive is true.

Syntax
REGISTER ivy://org:module:version?transitive=false

• Exclude

While registering an artifact if you wish to exclude some dependencies you can specify
them using the exclude key. Suppose you want to use a specific version of a dependent
jar which doesn't match the version of the jar when automatically fetched, then you could
exclude such dependencies by specifying a comma separated list of dependencies and
register the dependent jar separately.

Syntax
REGISTER ivy://org:module:version?exclude=org:mod,org:mod,...

• Classifier

Some maven dependencies need classifiers in order to be able to resolve. You can specify
them using a classifier key.

Syntax
REGISTER ivy://org:module:version?classifier=value

7.3.3.2 Other properties

• An optional pig property, pig.artifacts.download.location, can be used to configure the
location where the artifacts should be downloaded. By default, they will be downloaded
to ~/.groovy/grapes

• This command can be used or can replace the register jar command wherever used
including macros.

• Group/Organization and Version are optional fields. In such cases you can leave them
blank.

• The repositories can be configured using an ivysettings file. Pig will search for an
ivysettings.xml file in the following locations in order. PIG_CONF_DIR > PIG_HOME
> Classpath

7.3.4 Examples

• Registering an Artifact and all its dependencies.

                -- Both are the same

                REGISTER ivy://org.apache.avro:avro:1.5.1



Pig Latin Basics

Page 98Copyright © 2007 The Apache Software Foundation. All rights reserved.

                REGISTER ivy://org.apache.avro:avro:1.5.1?transitive=true

• Registering an artifact without getting its dependencies.

               REGISTER ivy://org.apache.avro:avro:1.5.1?transitive=false

• Registering the latest artifact.

                -- Both of the following syntaxes work.

                REGISTER ivy://org.apache.avro:avro:+

                REGISTER ivy://org.apache.avro:avro:*

• Registering an artifact by excluding specific dependencies.

                REGISTER ivy://org.apache.pig:pig:0.10.0?exclude=commons-cli:commons-
cli,commons-codec:commons-codec

• Specifying a classifier

                REGISTER ivy://net.sf.json-lib:json-lib:2.4?classifier=jdk15

• Registering an artifact without a group or organization. Just skip them.

                REGISTER ivy://:module:


	Table of contents
	1 Conventions
	2 Reserved Keywords
	3 Case Sensitivity
	4 Data Types and More
	4.1 Identifiers
	4.2 Relations, Bags, Tuples, Fields
	4.2.1 Referencing Relations
	4.2.2 Referencing Fields
	4.2.3 Referencing Fields that are Complex Data Types

	4.3 Data Types
	4.3.1 Simple and Complex
	4.3.2 Tuple
	4.3.2.1 Syntax
	4.3.2.2 Terms
	4.3.2.3 Usage
	4.3.2.4 Example

	4.3.3 Bag
	4.3.3.1 Syntax: Inner bag
	4.3.3.2 Terms
	4.3.3.3 Usage
	4.3.3.4 Example: Outer Bag
	4.3.3.5 Example: Inner Bag

	4.3.4 Map
	4.3.4.1 Syntax (<> denotes optional)
	4.3.4.2 Terms
	4.3.4.3 Usage
	4.3.4.4 Example


	4.4 Nulls and Pig Latin
	4.4.1 Nulls, Operators, and Functions
	4.4.2 Nulls and Constants
	4.4.3 Operations That Produce Nulls
	4.4.3.1 Example: Accessing a field that does not exist in a tuple

	4.4.4 Nulls and Load Functions
	4.4.5 Nulls and GROUP/COGROUP Operators
	4.4.6 Nulls and JOIN Operator
	4.4.7 Nulls and FLATTEN Operator

	4.5 Constants
	4.6 Expressions
	4.6.1 Field Expressions
	4.6.2 Star Expressions
	4.6.3 Project-Range Expressions
	4.6.4 Boolean Expressions
	4.6.5 Tuple Expressions
	4.6.6 General Expressions

	4.7 Schemas
	4.7.1 Schemas with LOAD and STREAM
	4.7.2 Schemas with FOREACH
	4.7.3 Schemas for Simple Data Types
	4.7.3.1 Syntax
	4.7.3.2 Terms
	4.7.3.3 Examples

	4.7.4 Schemas for Complex Data Types
	4.7.5 Tuple Schemas
	4.7.5.1 Syntax
	4.7.5.2 Terms
	4.7.5.3 Examples

	4.7.6 Bag Schemas
	4.7.6.1 Syntax
	4.7.6.2 Terms
	4.7.6.3 Examples

	4.7.7 Map Schemas
	4.7.7.1 Syntax (<> demotes optional)
	4.7.7.2 Terms
	4.7.7.3 Examples

	4.7.8 Schemas for Multiple Types
	4.7.8.1 Example
	4.7.8.2 Previous Relation Shortcut



	5 Arithmetic Operators and More
	5.1 Arithmetic Operators
	5.1.1 Description
	5.1.1.1 Examples
	5.1.1.2 Types Table: addition (+) and subtraction (-) operators
	5.1.1.3 Types Table: multiplication (*) and division (/) operators
	5.1.1.4 Types Table: modulo (%) operator


	5.2 Boolean Operators
	5.2.1 Description
	5.2.1.1 Example


	5.3 Cast Operators
	5.3.1 Description
	5.3.1.1 Syntax  
	5.3.1.2 Terms
	5.3.1.3 Usage

	5.3.2 Examples
	5.3.3 Casting Relations to Scalars

	5.4 Comparison Operators
	5.4.1 Description
	5.4.2 Examples
	5.4.3 Types Table: equal (==) operator
	5.4.4 Types Table: not equal (!=) operator
	5.4.5 Types Table: matches operator

	5.5 Type Construction Operators
	5.5.1 Description
	5.5.2 Examples

	5.6 Dereference Operators
	5.6.1 Description
	5.6.2 Examples

	5.7 Disambiguate Operator
	5.8 Flatten Operator
	5.9 Null Operators
	5.9.1 Description
	5.9.2 Examples
	5.9.3 Types Table

	5.10 Sign Operators
	5.10.1 Description
	5.10.2 Examples
	5.10.3 Types Table: negative ( - ) operator


	6 Relational Operators
	6.1 ASSERT
	6.1.1 Syntax
	6.1.2 Terms
	6.1.3 Usage
	6.1.4 Examples

	6.2 COGROUP
	6.3 CROSS
	6.3.1 Syntax
	6.3.2 Terms
	6.3.3 Usage
	6.3.4 Example

	6.4 CUBE
	6.4.1 Cube operation
	6.4.2 Rollup operation
	6.4.3 Syntax
	6.4.4 Terms
	6.4.5 Example
	6.4.6 Basic usage of CUBE operation
	6.4.7 Output schema
	6.4.8 Basic usage of ROLLUP operation
	6.4.9 Output schema
	6.4.10 Basic usage of CUBE and ROLLUP operation combined
	6.4.11 Output schema
	6.4.12 Handling null values in dimensions

	6.5 DEFINE
	6.6 DISTINCT
	6.6.1 Syntax
	6.6.2 Terms
	6.6.3 Usage
	6.6.4 Example

	6.7 FILTER
	6.7.1 Syntax
	6.7.2 Terms
	6.7.3 Usage
	6.7.4 Examples

	6.8 FOREACH
	6.8.1 Syntax
	6.8.2 Terms
	6.8.3 Usage
	6.8.4 Example: Projection
	6.8.5 Example: Nested Projection
	6.8.6 Example: Schema
	6.8.7 Example: Applying Functions
	6.8.8 Example: Flatten
	6.8.9 Example: Nested Block

	6.9 GROUP
	6.9.1 Syntax
	6.9.2 Terms
	6.9.3 Usage
	6.9.4 Example
	6.9.5 Example
	6.9.6 Example
	6.9.7 Example
	6.9.8 Example: PARTITION BY

	6.10 IMPORT
	6.11 JOIN (inner)
	6.11.1 Syntax
	6.11.2 Terms
	6.11.3 Usage
	6.11.4 Example

	6.12 JOIN (outer)
	6.12.1 Syntax
	6.12.2 Terms
	6.12.3 Usage
	6.12.4 Examples

	6.13 LIMIT
	6.13.1 Syntax
	6.13.2 Terms
	6.13.3 Usage
	6.13.4 Examples

	6.14 LOAD
	6.14.1 Syntax
	6.14.2 Terms
	6.14.3 Usage
	6.14.4 Examples

	6.15 NATIVE
	6.15.1 Syntax
	6.15.2 Terms
	6.15.3 Usage
	6.15.4 Example

	6.16 ORDER BY
	6.16.1 Syntax
	6.16.2 Terms
	6.16.3 Usage
	6.16.4 Examples

	6.17 RANK
	6.17.1 Syntax
	6.17.2 Terms
	6.17.3 Usage
	6.17.4 Examples

	6.18 SAMPLE
	6.18.1 Syntax
	6.18.2 Terms
	6.18.3 Usage
	6.18.4 Example

	6.19 SPLIT
	6.19.1 Syntax
	6.19.2 Terms
	6.19.3 Usage
	6.19.4 Example
	6.19.5 Example

	6.20 STORE
	6.20.1 Syntax
	6.20.2 Terms
	6.20.3 Usage
	6.20.4 Examples

	6.21 STREAM
	6.21.1 Syntax
	6.21.2 Terms
	6.21.3 Usage
	6.21.4 About Data Guarantees
	6.21.5 Example: Data Guarantees
	6.21.6 Example: Schemas

	6.22 UNION
	6.22.1 Syntax
	6.22.2 Terms
	6.22.3 Usage
	6.22.4 Example
	6.22.5 Example


	7 UDF Statements
	7.1 DEFINE (UDFs, streaming)
	7.1.1 Syntax: UDF and streaming
	7.1.2 Terms
	7.1.3 Usage
	7.1.3.1 About Input and Output for Streaming
	7.1.3.2 About Ship
	7.1.3.3 About Cache
	7.1.3.4 About Auto-Ship

	7.1.4 Examples: Input/Output
	7.1.5 Examples: Ship/Cache
	7.1.6 Example: DEFINE with STREAM
	7.1.7 Examples: Logging
	7.1.8 Examples: DEFINE a function

	7.2 REGISTER (a jar/script)
	7.2.1 Syntax
	7.2.2 Terms
	7.2.3 Usage
	7.2.4 Examples

	7.3 REGISTER (an artifact)
	7.3.1 Syntax
	7.3.2 Terms
	7.3.3 Usage
	7.3.3.1 Parameters Supported in the Query String
	7.3.3.2 Other properties

	7.3.4 Examples



