
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Performance and Efficiency

Table of contents

1 Tez mode..2

2 Timing your UDFs...3

3 Combiner.. 4

4 Hash-based Aggregation in Map Task.. 6

5 Memory Management.. 7

6 Reducer Estimation.. 7

7 Multi-Query Execution...7

8 Optimization Rules...13

9 Performance Enhancers..17

10 Specialized Joins.. 26

Performance and Efficiency

Page 2Copyright © 2007 The Apache Software Foundation. All rights reserved.

1 Tez mode

Apache Tez provides an alternative execution engine than MapReduce focusing on
performance. By using optimized job flow, edge semantics and container reuse, we see
consistent performance boost for both large job and small job.

1.1 How to enable Tez

To run Pig in tez mode, simply add "-x tez" in pig command line. Alternatively, you can add
"exectype=tez" to conf/pig.properties to change the default exec type to Tez. Java system
property "-Dexectype=tez" is also good to trigger the Tez mode.

Prerequisite: Tez requires the tez tarball to be available in hdfs while running a job on
the cluster and a tez-site.xml with tez.lib.uris setting pointing to that hdfs location in
classpath. Copy the tez tarball to hdfs and add the tez conf directory($TEZ_HOME/conf)
containing tez-site.xml to environmental variable "PIG_CLASSPATH" if pig on tez fails
with "tez.lib.uris is not defined". This is required by the Apache Pig distribution.

 <property>
 <name>tez.lib.uris</name>
 <value>${fs.defaultFS}/apps/tez/tez-0.5.2.tar.gz</value>
 </property>

1.2 Tez DAG generation

Every Pig script will be compiled into 1 or more Tez DAG (typically 1). Every Tez DAG
consists of a number of vertices and and edges connecting vertices. For example, a simple
join involves 1 DAG which consists of 3 vertices: load left input, load right input and join.
Do an explain in Tez mode will show you the DAG Pig script compiled into.

1.3 Tez session/container reuse

One downside of MapReduce is the startup cost for a job is very high. That hurts the
performance especially for small job. Tez alleviate the problem by using session and
container reuse, so it is not necessary to start an application master for every job, and start
a JVM for every task. By default, session/container reuse is on and we usually shall not
turn it off. JVM reuse might cause some side effect if static variable is used since static
variable might live across different jobs. So if static variable is used in EvalFunc/LoadFunc/
StoreFunc, be sure to implement a cleanup function and register with JVMReuseManager.

http://tez.apache.org
test.html#explain
http://pig.apache.org/docs/r0.17.0/api/org/apache/pig/JVMReuseManager.html

Performance and Efficiency

Page 3Copyright © 2007 The Apache Software Foundation. All rights reserved.

1.4 Automatic parallelism

Just like MapReduce, if user specify "parallel" in their Pig statement, or user define
default_parallel in Tez mode, Pig will honor it (the only exception is if user specify a parallel
which is apparently too low, Pig will override it)

If user specify neither "parallel" or "default_parallel", Pig will use automatic parallelism.
In MapReduce, Pig submit one MapReduce job a time and before submiting a job, Pig
has chance to automatically set reduce parallelism based on the size of input file. On the
contrary, Tez submit a DAG as a unit and automatic parallelism is managed in three parts

• Before submiting a DAG, Pig estimate parallelism of each vertex statically based on the
input file size of the DAG and the complexity of the pipeline of each vertex

• When DAG progress, Pig adjust the parallelism of vertexes with the best knowledge
available at that moment (Pig grace paralellism)

• At runtime, Tez adjust vertex parallelism dynamically based on the input data volume
of the vertex. Note currently Tez can only decrease the parallelism dynamically not
increase. So in step 1 and 2, Pig overestimate the parallelism

The following parameter control the behavior of automatic parallelism in Tez (share with
MapReduce):

pig.exec.reducers.bytes.per.reducer
pig.exec.reducers.max

1.5 API change

If invoking Pig in Java, there is change in PigStats and PigProgressNotificationListener if
using PigRunner.run(), check Pig Statistics and Pig Progress Notification Listener

1.6 Known issues

Currently known issue in Tez mode includes:

• Tez local mode is not stable, we see job hang in some cases
• Tez specific GUI is not available yet, there is no GUI to track task progress. However,

log message is available in GUI

2 Timing your UDFs

The first step to improving performance and efficiency is measuring where the time is going.
Pig provides a light-weight method for approximately measuring how much time is spent in
different user-defined functions (UDFs) and Loaders. Simply set the pig.udf.profile property
to true. This will cause new counters to be tracked for all Map-Reduce jobs generated by
your script: approx_microsecs measures the approximate amount of time spent in a UDF,

test.html#pig-statistics
test.html#ppnl

Performance and Efficiency

Page 4Copyright © 2007 The Apache Software Foundation. All rights reserved.

and approx_invocations measures the approximate number of times the UDF was invoked.
In addition, the frequency of profiling can be configured via the pig.udf.profile.frequency (by
default, every 100th invocation). Note that this may produce a large number of counters (two
per UDF). Excessive amounts of counters can lead to poor JobTracker performance, so use
this feature carefully, and preferably on a test cluster.

3 Combiner

The Pig combiner is an optimizer that is invoked when the statements in your scripts are
arranged in certain ways. The examples below demonstrate when the combiner is used and
not used. Whenever possible, make sure the combiner is used as it frequently yields an order
of magnitude improvement in performance.

3.1 When the Combiner is Used

The combiner is generally used in the case of non-nested foreach where all projections are
either expressions on the group column or expressions on algebraic UDFs (see Make Your
UDFs Algebraic).

Example:

A = load 'studenttab10k' as (name, age, gpa);
B = group A by age;
C = foreach B generate ABS(SUM(A.gpa)), COUNT(org.apache.pig.builtin.Distinct(A.name)),
 (MIN(A.gpa) + MAX(A.gpa))/2, group.age;
explain C;

In the above example:

• The GROUP statement can be referred to as a whole or by accessing individual fields (as
in the example).

• The GROUP statement and its elements can appear anywhere in the projection.

In the above example, a variety of expressions can be applied to algebraic functions
including:

• A column transformation function such as ABS can be applied to an algebraic function
SUM.

• An algebraic function (COUNT) can be applied to another algebraic function (Distinct),
but only the inner function is computed using the combiner.

• A mathematical expression can be applied to one or more algebraic functions.

You can check if the combiner is used for your query by running EXPLAIN on the
FOREACH alias as shown above. You should see the combine section in the MapReduce
part of the plan:

test.html#explain

Performance and Efficiency

Page 5Copyright © 2007 The Apache Software Foundation. All rights reserved.

.....
Combine Plan
B: Local Rearrange[tuple]{bytearray}(false) - scope-42
| |
| Project[bytearray][0] - scope-43
|
|---C: New For Each(false,false,false)[bag] - scope-28
| |
| Project[bytearray][0] - scope-29
| |
| POUserFunc(org.apache.pig.builtin.SUM$Intermediate)[tuple] - scope-30
| |
| |---Project[bag][1] - scope-31
| |
| POUserFunc(org.apache.pig.builtin.Distinct$Intermediate)[tuple] - scope-32
| |
| |---Project[bag][2] - scope-33
|
|---POCombinerPackage[tuple]{bytearray} - scope-36--------
.....

The combiner is also used with a nested foreach as long as the only nested operation used is
DISTINCT (see FOREACH and Example: Nested Block).

A = load 'studenttab10k' as (name, age, gpa);
B = group A by age;
C = foreach B { D = distinct (A.name); generate group, COUNT(D);}

Finally, use of the combiner is influenced by the surrounding environment of the GROUP
and FOREACH statements.

3.2 When the Combiner is Not Used

The combiner is generally not used if there is any operator that comes between the GROUP
and FOREACH statements in the execution plan. Even if the statements are next to each
other in your script, the optimizer might rearrange them. In this example, the optimizer will
push FILTER above FOREACH which will prevent the use of the combiner:

A = load 'studenttab10k' as (name, age, gpa);
B = group A by age;
C = foreach B generate group, COUNT (A);
D = filter C by group.age <30;

Please note that the script above can be made more efficient by performing filtering before
the GROUP statement:

A = load 'studenttab10k' as (name, age, gpa);
B = filter A by age <30;

basic.html#foreach
basic.html#nestedblock

Performance and Efficiency

Page 6Copyright © 2007 The Apache Software Foundation. All rights reserved.

C = group B by age;
D = foreach C generate group, COUNT (B);

Note: One exception to the above rule is LIMIT. Starting with Pig 0.9, even if LIMIT
comes between GROUP and FOREACH, the combiner will still be used. In this example,
the optimizer will push LIMIT above FOREACH but this will not prevent the use of the
combiner.

A = load 'studenttab10k' as (name, age, gpa);
B = group A by age;
C = foreach B generate group, COUNT (A);
D = limit C 20;

The combiner is also not used in the case where multiple FOREACH statements are
associated with the same GROUP:

A = load 'studenttab10k' as (name, age, gpa);
B = group A by age;
C = foreach B generate group, COUNT (A);
D = foreach B generate group, MIN (A.gpa). MAX(A.gpa);
.....

Depending on your use case, it might be more efficient (improve performance) to split your
script into multiple scripts.

4 Hash-based Aggregation in Map Task

To improve performance, hash-based aggregation will aggregate records in the map task
before sending them to the combiner. This optimization reduces the serializing/deserializing
costs of the combiner by sending it fewer records.

Turning On Off

Hash-based aggregation has been shown to improve the speed of group-by operations by up
to 50%. However, since this is a very new feature, it is currently turned OFF by default. To
turn it ON, set the property pig.exec.mapPartAgg to true.

Configuring

If the group-by keys used for grouping don't result in a sufficient reduction in the number
of records, the performance might be worse with this feature turned ON. To prevent this
from happening, the feature turns itself off if the reduction in records sent to combiner
is not more than a configurable threshold. This threshold can be set using the property
pig.exec.mapPartAgg.minReduction. It is set to a default value of 10, which means that the
number of records that get sent to the combiner should be reduced by a factor of 10 or more.

Performance and Efficiency

Page 7Copyright © 2007 The Apache Software Foundation. All rights reserved.

5 Memory Management

Pig allocates a fix amount of memory to store bags and spills to disk as soon as the memory
limit is reached. This is very similar to how Hadoop decides when to spill data accumulated
by the combiner.

The amount of memory allocated to bags is determined by pig.cachedbag.memusage; the
default is set to 20% (0.2) of available memory. Note that this memory is shared across all
large bags used by the application.

6 Reducer Estimation

By default Pig determines the number of reducers to use for a given job based
on the size of the input to the map phase. The input data size is divided by the
pig.exec.reducers.bytes.per.reducer parameter value (default 1GB) to determine the
number of reducers. The maximum number of reducers for a job is limited by the
pig.exec.reducers.max parameter (default 999).

The default reducer estimation algorithm described above can be
overridden by setting the pig.exec.reducer.estimator parameter
to the fully qualified class name of an implementation of
org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigReducerEstimator(MapReduce)
or
org.apache.pig.backend.hadoop.executionengine.tez.plan.optimizer.TezOperDependencyParallelismEstimator(Tez).
The class must exist on the classpath of the process submitting the Pig job. If the
pig.exec.reducer.estimator.arg parameter is set, the value will be passed to a constructor of
the implementing class that takes a single String.

7 Multi-Query Execution

With multi-query execution Pig processes an entire script or a batch of statements at once.

7.1 Turning it On or Off

Multi-query execution is turned on by default. To turn it off and revert to Pig's "execute-on-
dump/store" behavior, use the "-M" or "-no_multiquery" options.

To run script "myscript.pig" without the optimization, execute Pig as follows:

$ pig -M myscript.pig
or
$ pig -no_multiquery myscript.pig

http://svn.apache.org/repos/asf/pig/trunk/src/org/apache/pig/backend/hadoop/executionengine/mapReduceLayer/PigReducerEstimator.java
http://svn.apache.org/repos/asf/pig/trunk/src/org/apache/pig/backend/hadoop/executionengine/tez/plan/optimizer/TezOperDependencyParallelismEstimator.java

Performance and Efficiency

Page 8Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.2 How it Works

Multi-query execution introduces some changes:

• For batch mode execution, the entire script is first parsed to determine if intermediate
tasks can be combined to reduce the overall amount of work that needs to be done;
execution starts only after the parsing is completed (see the EXPLAIN operator and the
run and exec commands).

• Two run scenarios are optimized, as explained below: explicit and implicit splits, and
storing intermediate results.

7.2.1 Explicit and Implicit Splits

There might be cases in which you want different processing on separate parts of the same
data stream.

Example 1:

A = LOAD ...
...
SPLIT A' INTO B IF ..., C IF ...
...
STORE B' ...
STORE C' ...

Example 2:

A = LOAD ...
...
B = FILTER A' ...
C = FILTER A' ...
...
STORE B' ...
STORE C' ...

In prior Pig releases, Example 1 will dump A' to disk and then start jobs for B' and C'.
Example 2 will execute all the dependencies of B' and store it and then execute all the
dependencies of C' and store it. Both are equivalent, but the performance will be different.

Here's what the multi-query execution does to increase the performance:

• For Example 2, adds an implicit split to transform the query to Example 1. This
eliminates the processing of A' multiple times.

• Makes the split non-blocking and allows processing to continue. This helps reduce the
amount of data that has to be stored right at the split.

• Allows multiple outputs from a job. This way some results can be stored as a side-effect
of the main job. This is also necessary to make the previous item work.

test.html#explain
cmds.html#run
cmds.html#exec

Performance and Efficiency

Page 9Copyright © 2007 The Apache Software Foundation. All rights reserved.

• Allows multiple split branches to be carried on to the combiner/reducer. This reduces the
amount of IO again in the case where multiple branches in the split can benefit from a
combiner run.

7.2.2 Storing Intermediate Results

Sometimes it is necessary to store intermediate results.

A = LOAD ...
...
STORE A'
...
STORE A''

If the script doesn't re-load A' for the processing of A the steps above A' will be duplicated.
This is a special case of Example 2 above, so the same steps are recommended. With multi-
query execution, the script will process A and dump A' as a side-effect.

7.3 Store vs. Dump

With multi-query exection, you want to use STORE to save (persist) your results. You do
not want to use DUMP as it will disable multi-query execution and is likely to slow down
execution. (If you have included DUMP statements in your scripts for debugging purposes,
you should remove them.)

DUMP Example: In this script, because the DUMP command is interactive, the multi-query
execution will be disabled and two separate jobs will be created to execute this script. The
first job will execute A > B > DUMP while the second job will execute A > B > C > STORE.

A = LOAD 'input' AS (x, y, z);
B = FILTER A BY x > 5;
DUMP B;
C = FOREACH B GENERATE y, z;
STORE C INTO 'output';

STORE Example: In this script, multi-query optimization will kick in allowing the entire
script to be executed as a single job. Two outputs are produced: output1 and output2.

A = LOAD 'input' AS (x, y, z);
B = FILTER A BY x > 5;
STORE B INTO 'output1';
C = FOREACH B GENERATE y, z;
STORE C INTO 'output2';

basic.html#store
test.html#dump

Performance and Efficiency

Page 10Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.4 Error Handling

With multi-query execution Pig processes an entire script or a batch of statements at once. By
default Pig tries to run all the jobs that result from that, regardless of whether some jobs fail
during execution. To check which jobs have succeeded or failed use one of these options.

First, Pig logs all successful and failed store commands. Store commands are identified
by output path. At the end of execution a summary line indicates success, partial failure or
failure of all store commands.

Second, Pig returns different code upon completion for these scenarios:

• Return code 0: All jobs succeeded
• Return code 1: Used for retrievable errors
• Return code 2: All jobs have failed
• Return code 3: Some jobs have failed

In some cases it might be desirable to fail the entire script upon detecting the first failed job.
This can be achieved with the "-F" or "-stop_on_failure" command line flag. If used, Pig will
stop execution when the first failed job is detected and discontinue further processing. This
also means that file commands that come after a failed store in the script will not be executed
(this can be used to create "done" files).

This is how the flag is used:

$ pig -F myscript.pig
or
$ pig -stop_on_failure myscript.pig

7.5 Backward Compatibility

Most existing Pig scripts will produce the same result with or without the multi-query
execution. There are cases though where this is not true. Path names and schemes are
discussed here.

Any script is parsed in it's entirety before it is sent to execution. Since the current directory
can change throughout the script any path used in LOAD or STORE statement is translated
to a fully qualified and absolute path.

In map-reduce mode, the following script will load from "hdfs://<host>:<port>/data1" and
store into "hdfs://<host>:<port>/tmp/out1".

cd /;
A = LOAD 'data1';
cd tmp;
STORE A INTO 'out1';

Performance and Efficiency

Page 11Copyright © 2007 The Apache Software Foundation. All rights reserved.

These expanded paths will be passed to any LoadFunc or Slicer implementation. In some
cases this can cause problems, especially when a LoadFunc/Slicer is not used to read from a
dfs file or path (for example, loading from an SQL database).

Solutions are to either:

• Specify "-M" or "-no_multiquery" to revert to the old names
• Specify a custom scheme for the LoadFunc/Slicer

Arguments used in a LOAD statement that have a scheme other than "hdfs" or "file" will not
be expanded and passed to the LoadFunc/Slicer unchanged.

In the SQL case, the SQLLoader function is invoked with 'sql://mytable'.

A = LOAD 'sql://mytable' USING SQLLoader();

7.6 Implicit Dependencies

If a script has dependencies on the execution order outside of what Pig knows about,
execution may fail.

7.6.1 Example

In this script, MYUDF might try to read from out1, a file that A was just stored into.
However, Pig does not know that MYUDF depends on the out1 file and might submit the
jobs producing the out2 and out1 files at the same time.

...
STORE A INTO 'out1';
B = LOAD 'data2';
C = FOREACH B GENERATE MYUDF($0,'out1');
STORE C INTO 'out2';

To make the script work (to ensure that the right execution order is enforced) add the exec
statement. The exec statement will trigger the execution of the statements that produce the
out1 file.

...
STORE A INTO 'out1';
EXEC;
B = LOAD 'data2';
C = FOREACH B GENERATE MYUDF($0,'out1');
STORE C INTO 'out2';

Performance and Efficiency

Page 12Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.6.2 Example

In this script, the STORE/LOAD operators have different file paths; however, the LOAD
operator depends on the STORE operator.

A = LOAD '/user/xxx/firstinput' USING PigStorage();
B = group
C = agrregation function
STORE C INTO '/user/vxj/firstinputtempresult/days1';
..
Atab = LOAD '/user/xxx/secondinput' USING PigStorage();
Btab = group
Ctab = agrregation function
STORE Ctab INTO '/user/vxj/secondinputtempresult/days1';
..
E = LOAD '/user/vxj/firstinputtempresult/' USING PigStorage();
F = group
G = aggregation function
STORE G INTO '/user/vxj/finalresult1';

Etab =LOAD '/user/vxj/secondinputtempresult/' USING PigStorage();
Ftab = group
Gtab = aggregation function
STORE Gtab INTO '/user/vxj/finalresult2';

To make the script work, add the exec statement.

A = LOAD '/user/xxx/firstinput' USING PigStorage();
B = group
C = agrregation function
STORE C INTO '/user/vxj/firstinputtempresult/days1';
..
Atab = LOAD '/user/xxx/secondinput' USING PigStorage();
Btab = group
Ctab = agrregation function
STORE Ctab INTO '/user/vxj/secondinputtempresult/days1';

EXEC;

E = LOAD '/user/vxj/firstinputtempresult/' USING PigStorage();
F = group
G = aggregation function
STORE G INTO '/user/vxj/finalresult1';
..
Etab =LOAD '/user/vxj/secondinputtempresult/' USING PigStorage();
Ftab = group
Gtab = aggregation function
STORE Gtab INTO '/user/vxj/finalresult2';

If the STORE and LOAD both had exact matching file paths, Pig will recognize the implicit
dependency and launch two different mapreduce jobs/Tez DAGs with the second job
depending on the output of the first one. exec is not required to be specified in that case.

Performance and Efficiency

Page 13Copyright © 2007 The Apache Software Foundation. All rights reserved.

8 Optimization Rules

Pig supports various optimization rules, all of which are enabled by default. To disable all or
specific optimizations, use one or more of the following methods. Note some optimization
rules are mandatory and cannot be disabled.

• The pig.optimizer.rules.disabled pig property, which accepts a comma-
separated list of optimization rules to disable; the all keyword disables all non-
mandatory optimizations. (e.g.: set pig.optimizer.rules.disabled
'ColumnMapKeyPrune';)

• The -t, -optimizer_off command-line options. (e.g.: pig -optimizer_off
[opt_rule | all])

FilterLogicExpressionSimplifier is an exception to the
above. The rule is disabled by default, and enabled by setting the
pig.exec.filterLogicExpressionSimplifier pig property to true.

8.1 PartitionFilterOptimizer

Push the filter condition to loader.

A = LOAD 'input' as (dt, state, event) using HCatLoader();
B = FILTER A BY dt=='201310' AND state=='CA';

Filter condition will be pushed to loader if loader supports (Usually the loader is partition
aware, such as HCatLoader)

A = LOAD 'input' as (dt, state, event) using HCatLoader();
--Filter is removed

Loader will be instructed to loader the partition with dt=='201310' and state=='CA'

8.2 PredicatePushdownOptimizer

Push the filter condition to loader. Different than PartitionFilterOptimizer, the filter condition
will be evaluated in Pig. In other words, the filter condition pushed to the loader is a hint.
Loader might still load records which does not satisfy filter condition.

A = LOAD 'input' using OrcStorage();
B = FILTER A BY dt=='201310' AND state=='CA';

Filter condition will be pushed to loader if loader supports

A = LOAD 'input' using OrcStorage(); -- Filter condition push to loader

start.html#properties

Performance and Efficiency

Page 14Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = FILTER A BY dt=='201310' AND state=='CA'; -- Filter evaluated in Pig again

8.3 ConstantCalculator

This rule evaluates constant expression.

1) Constant pre-calculation

B = FILTER A BY a0 > 5+7;
is simplified to
B = FILTER A BY a0 > 12;

2) Evaluate UDF

B = FOREACH A generate UPPER(CONCAT('a', 'b'));
is simplified to
B = FOREACH A generate 'AB';

8.4 SplitFilter

Split filter conditions so that we can push filter more aggressively.

A = LOAD 'input1' as (a0, a1);
B = LOAD 'input2' as (b0, b1);
C = JOIN A by a0, B by b0;
D = FILTER C BY a1>0 and b1>0;

Here D will be splitted into:

X = FILTER C BY a1>0;
D = FILTER X BY b1>0;

So "a1>0" and "b1>0" can be pushed up individually.

8.5 PushUpFilter

The objective of this rule is to push the FILTER operators up the data flow graph. As a result,
the number of records that flow through the pipeline is reduced.

A = LOAD 'input';
B = GROUP A BY $0;
C = FILTER B BY $0 < 10;

8.6 MergeFilter

Merge filter conditions after PushUpFilter rule to decrease the number of filter statements.

Performance and Efficiency

Page 15Copyright © 2007 The Apache Software Foundation. All rights reserved.

8.7 PushDownForEachFlatten

The objective of this rule is to reduce the number of records that flow through the pipeline by
moving FOREACH operators with a FLATTEN down the data flow graph. In the example
shown below, it would be more efficient to move the foreach after the join to reduce the cost
of the join operation.

A = LOAD 'input' AS (a, b, c);
B = LOAD 'input2' AS (x, y, z);
C = FOREACH A GENERATE FLATTEN($0), B, C;
D = JOIN C BY $1, B BY $1;

8.8 LimitOptimizer

The objective of this rule is to push the LIMIT operator up the data flow graph (or down the
tree for database folks). In addition, for top-k (ORDER BY followed by a LIMIT) the LIMIT
is pushed into the ORDER BY.

A = LOAD 'input';
B = ORDER A BY $0;
C = LIMIT B 10;

8.9 ColumnMapKeyPrune

Prune the loader to only load necessary columns. The performance gain is more significant
if the corresponding loader support column pruning and only load necessary columns (See
LoadPushDown.pushProjection). Otherwise, ColumnMapKeyPrune will insert a ForEach
statement right after loader.

A = load 'input' as (a0, a1, a2);
B = ORDER A by a0;
C = FOREACH B GENERATE a0, a1;

a2 is irrelevant in this query, so we can prune it earlier. The loader in this query is PigStorage
and it supports column pruning. So we only load a0 and a1 from the input file.

ColumnMapKeyPrune also prunes unused map keys:

A = load 'input' as (a0:map[]);
B = FOREACH A generate a0#'key1';

Performance and Efficiency

Page 16Copyright © 2007 The Apache Software Foundation. All rights reserved.

8.10 AddForEach

Prune unused column as soon as possible. In addition to prune the loader in
ColumnMapKeyPrune, we can prune a column as soon as it is not used in the rest of the
script

-- Original code:

A = LOAD 'input' AS (a0, a1, a2);
B = ORDER A BY a0;
C = FILTER B BY a1>0;

We can only prune a2 from the loader. However, a0 is never used after "ORDER BY". So we
can drop a0 right after "ORDER BY" statement.

-- Optimized code:

A = LOAD 'input' AS (a0, a1, a2);
B = ORDER A BY a0;
B1 = FOREACH B GENERATE a1; -- drop a0
C = FILTER B1 BY a1>0;

8.11 MergeForEach

The objective of this rule is to merge together two feach statements, if these preconditions are
met:

• The foreach statements are consecutive.
• The first foreach statement does not contain flatten.
• The second foreach is not nested.

-- Original code:

A = LOAD 'file.txt' AS (a, b, c);
B = FOREACH A GENERATE a+b AS u, c-b AS v;
C = FOREACH B GENERATE $0+5, v;

-- Optimized code:

A = LOAD 'file.txt' AS (a, b, c);
C = FOREACH A GENERATE a+b+5, c-b;

8.12 GroupByConstParallelSetter

Force parallel "1" for "group all" statement. That's because even if we set parallel to N, only
1 reducer will be used in this case and all other reducer produce empty result.

Performance and Efficiency

Page 17Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'input';
B = GROUP A all PARALLEL 10;

9 Performance Enhancers

9.1 Use Optimization

Pig supports various optimization rules which are turned on by default. Become familiar with
these rules.

9.2 Use Types

If types are not specified in the load statement, Pig assumes the type of =double= for numeric
computations. A lot of the time, your data would be much smaller, maybe, integer or long.
Specifying the real type will help with speed of arithmetic computation. It has an additional
advantage of early error detection.

--Query 1
A = load 'myfile' as (t, u, v);
B = foreach A generate t + u;

--Query 2
A = load 'myfile' as (t: int, u: int, v);
B = foreach A generate t + u;

The second query will run more efficiently than the first. In some of our queries with see 2x
speedup.

9.3 Project Early and Often

Pig does not (yet) determine when a field is no longer needed and drop the field from the
row. For example, say you have a query like:

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = join A by t, B by x;
D = group C by u;
E = foreach D generate group, COUNT($1);

There is no need for v, y, or z to participate in this query. And there is no need to carry both
t and x past the join, just one will suffice. Changing the query above to the query below will
greatly reduce the amount of data being carried through the map and reduce phases by pig.

A = load 'myfile' as (t, u, v);
A1 = foreach A generate t, u;
B = load 'myotherfile' as (x, y, z);
B1 = foreach B generate x;

perf.html#optimization-rules

Performance and Efficiency

Page 18Copyright © 2007 The Apache Software Foundation. All rights reserved.

C = join A1 by t, B1 by x;
C1 = foreach C generate t, u;
D = group C1 by u;
E = foreach D generate group, COUNT($1);

Depending on your data, this can produce significant time savings. In queries similar to the
example shown here we have seen total time drop by 50%.

9.4 Filter Early and Often

As with early projection, in most cases it is beneficial to apply filters as early as possible to
reduce the amount of data flowing through the pipeline.

-- Query 1
A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = filter A by t == 1;
D = join C by t, B by x;
E = group D by u;
F = foreach E generate group, COUNT($1);

-- Query 2
A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = join A by t, B by x;
D = group C by u;
E = foreach D generate group, COUNT($1);
F = filter E by C.t == 1;

The first query is clearly more efficient than the second one because it reduces the amount of
data going into the join.

One case where pushing filters up might not be a good idea is if the cost of applying filter is
very high and only a small amount of data is filtered out.

9.5 Reduce Your Operator Pipeline

For clarity of your script, you might choose to split your projects into several steps for
instance:

A = load 'data' as (in: map[]);
-- get key out of the map
B = foreach A generate in#'k1' as k1, in#'k2' as k2;
-- concatenate the keys
C = foreach B generate CONCAT(k1, k2);
.......

While the example above is easier to read, you might want to consider combining the two
foreach statements to improve your query performance:

Performance and Efficiency

Page 19Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = load 'data' as (in: map[]);
-- concatenate the keys from the map
B = foreach A generate CONCAT(in#'k1', in#'k2');
....

The same goes for filters.

9.6 Make Your UDFs Algebraic

Queries that can take advantage of the combiner generally ran much faster (sometimes
several times faster) than the versions that don't. The latest code significantly improves
combiner usage; however, you need to make sure you do your part. If you have a UDF
that works on grouped data and is, by nature, algebraic (meaning their computation can be
decomposed into multiple steps) make sure you implement it as such. For details on how to
write algebraic UDFs, see Algebraic Interface.

A = load 'data' as (x, y, z)
B = group A by x;
C = foreach B generate group, MyUDF(A);
....

If MyUDF is algebraic, the query will use combiner and run much faster. You can run
explain command on your query to make sure that combiner is used.

9.7 Use the Accumulator Interface

If your UDF can't be made Algebraic but is able to deal with getting input in chunks rather
than all at once, consider implementing the Accumulator interface to reduce the amount of
memory used by your script. If your function is Algebraic and can be used on conjunction
with Accumulator functions, you will need to implement the Accumulator interface as well
as the Algebraic interface. For more information, see Accumulator Interface.

Note: Pig automatically chooses the interface that it expects to provide the best performance:
Algebraic > Accumulator > Default.

9.8 Drop Nulls Before a Join

With the introduction of nulls, join and cogroup semantics were altered to work with nulls.
The semantic for cogrouping with nulls is that nulls from a given input are grouped together,
but nulls across inputs are not grouped together. This preserves the semantics of grouping
(nulls are collected together from a single input to be passed to aggregate functions like
COUNT) and the semantics of join (nulls are not joined across inputs). Since flattening an
empty bag results in an empty row (and no output), in a standard join the rows with a null
key will always be dropped.

This join

udf.html#algebraic-interface
udf.html#accumulator-interface

Performance and Efficiency

Page 20Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = join A by t, B by x;

is rewritten by Pig to

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C1 = cogroup A by t INNER, B by x INNER;
C = foreach C1 generate flatten(A), flatten(B);

Since the nulls from A and B won't be collected together, when the nulls are flattened we're
guaranteed to have an empty bag, which will result in no output. So the null keys will be
dropped. But they will not be dropped until the last possible moment.

If the query is rewritten to

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
A1 = filter A by t is not null;
B1 = filter B by x is not null;
C = join A1 by t, B1 by x;

then the nulls will be dropped before the join. Since all null keys go to a single reducer, if
your key is null even a small percentage of the time the gain can be significant. In one test
where the key was null 7% of the time and the data was spread across 200 reducers, we saw a
about a 10x speed up in the query by adding the early filters.

9.9 Take Advantage of Join Optimizations

Regular Join Optimizations

Optimization for regular joins ensures that the last table in the join is not brought into
memory but streamed through instead. Optimization reduces the amount of memory used
which means you can avoid spilling the data and also should be able to scale your query to
larger data volumes.

To take advantage of this optimization, make sure that the table with the largest number of
tuples per key is the last table in your query. In some of our tests we saw 10x performance
improvement as the result of this optimization.

small = load 'small_file' as (t, u, v);
large = load 'large_file' as (x, y, z);
C = join small by t, large by x;

Specialized Join Optimizations

Performance and Efficiency

Page 21Copyright © 2007 The Apache Software Foundation. All rights reserved.

Optimization can also be achieved using fragment replicate joins, skewed joins, and merge
joins. For more information see Specialized Joins.

9.10 Use the Parallel Features

You can set the number of reduce tasks for the MapReduce jobs generated by Pig using
two parallel features. (The parallel features only affect the number of reduce tasks. Map
parallelism is determined by the input file, one map for each HDFS block.)

You Set the Number of Reducers

Use the set default parallel command to set the number of reducers at the script level.

Alternatively, use the PARALLEL clause to set the number of reducers at the operator level.
(In a script, the value set via the PARALLEL clause will override any value set via "set
default parallel.") You can include the PARALLEL clause with any operator that starts a
reduce phase: COGROUP, CROSS, DISTINCT, GROUP, JOIN (inner), JOIN (outer), and
ORDER BY. PARALLEL clause can also be used with UNION if Tez is the execution
mode. It will turn off the union optimization and introduce an extra reduce step. Though it
will have slightly degraded performance due to the extra step, it is very useful for controlling
the number of output files.

The number of reducers you need for a particular construct in Pig that forms a MapReduce
boundary depends entirely on (1) your data and the number of intermediate keys you are
generating in your mappers and (2) the partitioner and distribution of map (combiner) output
keys. In the best cases we have seen that a reducer processing about 1 GB of data behaves
efficiently.

Let Pig Set the Number of Reducers

If neither "set default parallel" nor the PARALLEL clause are used, Pig sets the number of
reducers using a heuristic based on the size of the input data. You can set the values for these
properties:

• pig.exec.reducers.bytes.per.reducer - Defines the number of input bytes per reduce;
default value is 1000*1000*1000 (1GB).

• pig.exec.reducers.max - Defines the upper bound on the number of reducers; default is
999.

The formula, shown below, is very simple and will improve over time. The computed value
takes all inputs within the script into account and applies the computed value to all the jobs
within Pig script.

#reducers = MIN (pig.exec.reducers.max, total input size (in
bytes) / bytes per reducer)

Examples

perf.html#specialized-joins
cmds.html#set
basic.html#cogroup
basic.html#cross
basic.html#distinct
basic.html#group
basic.html#join-inner
basic.html#join-outer
basic.html#order-by
basic.html#union

Performance and Efficiency

Page 22Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example PARALLEL is used with the GROUP operator.

A = LOAD 'myfile' AS (t, u, v);
B = GROUP A BY t PARALLEL 18;
...

In this example all the MapReduce jobs that get launched use 20 reducers.

SET default_parallel 20;
A = LOAD 'myfile.txt' USING PigStorage() AS (t, u, v);
B = GROUP A BY t;
C = FOREACH B GENERATE group, COUNT(A.t) as mycount;
D = ORDER C BY mycount;
STORE D INTO 'mysortedcount' USING PigStorage();

9.11 Use the LIMIT Operator

Often you are not interested in the entire output but rather a sample or top results. In such
cases, using LIMIT can yield a much better performance as we push the limit as high as
possible to minimize the amount of data travelling through the pipeline.

Sample:

A = load 'myfile' as (t, u, v);
B = limit A 500;

Top results:

A = load 'myfile' as (t, u, v);
B = order A by t;
C = limit B 500;

9.12 Prefer DISTINCT over GROUP BY/GENERATE

To extract unique values from a column in a relation you can use DISTINCT or GROUP BY/
GENERATE. DISTINCT is the preferred method; it is faster and more efficient.

Example using GROUP BY - GENERATE:

A = load 'myfile' as (t, u, v);
B = foreach A generate u;
C = group B by u;
D = foreach C generate group as uniquekey;
dump D;

Example using DISTINCT:

Performance and Efficiency

Page 23Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = load 'myfile' as (t, u, v);
B = foreach A generate u;
C = distinct B;
dump C;

9.13 Compress the Results of Intermediate Jobs

If your Pig script generates a sequence of MapReduce jobs, you can compress the output of
the intermediate jobs using LZO compression. (Use the EXPLAIN operator to determine if
your script produces multiple MapReduce Jobs.)

By doing this, you will save HDFS space used to store the intermediate data used by PIG
and potentially improve query execution speed. In general, the more intermediate data that is
generated, the more benefits in storage and speed that result.

You can set the value for these properties:

• pig.tmpfilecompression - Determines if the temporary files should be compressed or not
(set to false by default).

• pig.tmpfilecompression.codec - Specifies which compression codec to use. Currently, Pig
accepts "gz" and "lzo" as possible values. However, because LZO is under GPL license
(and disabled by default) you will need to configure your cluster to use the LZO codec
to take advantage of this feature. For details, see http://code.google.com/p/hadoop-gpl-
compression/wiki/FAQ.

On the non-trivial queries (one ran longer than a couple of minutes) we saw significant
improvements both in terms of query latency and space usage. For some queries we saw up
to 96% disk saving and up to 4x query speed up. Of course, the performance characteristics
are very much query and data dependent and testing needs to be done to determine gains. We
did not see any slowdown in the tests we peformed which means that you are at least saving
on space while using compression.

With gzip we saw a better compression (96-99%) but at a cost of 4% slowdown. Thus, we
don't recommend using gzip.

Example

-- launch Pig script using lzo compression

java -cp $PIG_HOME/pig.jar
-Djava.library.path=<path to the lzo library>
-Dpig.tmpfilecompression=true
-Dpig.tmpfilecompression.codec=lzo org.apache.pig.Main myscript.pig

test.html#EXPLAIN

Performance and Efficiency

Page 24Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.14 Combine Small Input Files

Processing input (either user input or intermediate input) from multiple small files can be
inefficient because a separate map has to be created for each file. Pig can now combined
small files so that they are processed as a single map.

You can set the values for these properties:

• pig.maxCombinedSplitSize – Specifies the size, in bytes, of data to be processed by a
single map. Smaller files are combined untill this size is reached.

• pig.splitCombination – Turns combine split files on or off (set to “true” by default).

This feature works with PigStorage. However, if you are using a custom loader, please note
the following:

• If your loader implementation makes use of the PigSplit object passed through the
prepareToRead method, then you may need to rebuild the loader since the definition of
PigSplit has been modified.

• The loader must be stateless across the invocations to the prepareToRead method. That
is, the method should reset any internal states that are not affected by the RecordReader
argument.

• If a loader implements IndexableLoadFunc, or implements OrderedLoadFunc and
CollectableLoadFunc, its input splits won't be subject to possible combinations.

9.15 Direct Fetch

When the DUMP operator is used to execute Pig Latin statements, Pig can take the advantage
to minimize latency by directly reading data from HDFS rather than launching MapReduce
jobs.

The result is fetched if the query contains any of the following operators: FILTER,
FOREACH, LIMIT, STREAM, UNION.
Fetching will be disabled in case of:

• the presence of other operators, sample loaders and scalar expressions
• no LIMIT operator
• implicit splits

Also note that direct-fetch doesn't support UDFs that interact with the distributed cache. You
can check if the query can be fetched by running EXPLAIN. You should see "No MR jobs.
Fetch only." in the MapReduce part of the plan.

Direct fetch is turned on by default. To turn it off set the property opt.fetch to false or start
Pig with the "-N" or "-no_fetch" option.

func.html#pigstorage
test.html#dump
basic.html#filter
basic.html#foreach
basic.html#limit
basic.html#stream
basic.html#union
http://pig.apache.org/docs/r0.13.0/api/org/apache/pig/impl/builtin/SampleLoader.html
basic.html#limit

Performance and Efficiency

Page 25Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.16 Auto Local Mode

Processing small mapreduce jobs on hadoop cluster could be slow as it has overhead of job
startup and job scheduling. For jobs with small input data, pig can convert them to run them
as in-process mapreduce with hadoop's local mode. If pig.auto.local.enabled flag is set to
true, pig will convert mapreduce jobs with input data less than pig.auto.local.input.maxbytes
(100MB by default) to run in local mode, provided the number of reducers required by the
job are less than or equal to 1. Note, jobs converted to run in local mode load and store data
from HDFS, so any job in the pig workflow(dag) could be converted to run in local mode
without affecting its downstream jobs.

You can set the values for these properties in order to configure the behavior:

• pig.auto.local.enabled - Turns on/off auto local mode feature (false by default).
• pig.auto.local.input.maxbytes - Controls the max threshold size (in bytes) to convert jobs

to run in local mode (100MB by default).

Sometimes, you may want change job configuration for jobs that are converted to run in
local mode (eg- change io.sort.mb for small jobs). To do so, you can use pig.local. prefix
to any configuration and configuration will be set on converted jobs. For example, set
pig.local.io.sort.mb 100 will change io.sort.mb value to 100 for jobs converted to run in local
mode.

9.17 User Jar Cache

Jars required for user defined functions (UDFs) are copied to distributed cache by pig to
make them available on task nodes. To put these jars on distributed cache, pig clients copy
these jars to HDFS under a temporary location. For scheduled jobs, these jars do not change
frequently. Also, creating a lot of small jar files on HDFS is not HDFS friendly. To avoid
copying these small jar files to HDFS again and again, pig allows users to configure a user
level jar cache (readable only to the user for security reasons). If pig.user.cache.enabled
flag is set to true, UDF jars are copied to jar cache location (configurable) under a directory
named with the hash (SHA) of the jar. Hash of the jar is used to identify the existence of the
jar in subsequent uses of the jar by the user. If a jar with same hash and filename is found in
the cache, it is used avoiding copy of the jar to hdfs.

You can set the values for these properties in order to configure the jar cache:

• pig.user.cache.enabled - Turn on/off user jar cache feature (false by default).
• pig.user.cache.location - Path on HDFS that will be used a staging directory for the user

jar cache (defaults to pig.temp.dir or /tmp).

User jar cache feature is fail safe. If jars cannot be copied to jar cache due to any permission/
configuration problems, pig will default old behavior.

Performance and Efficiency

Page 26Copyright © 2007 The Apache Software Foundation. All rights reserved.

10 Specialized Joins

10.1 Replicated Joins

Fragment replicate join is a special type of join that works well if one or more relations are
small enough to fit into main memory. In such cases, Pig can perform a very efficient join
because all of the hadoop work is done on the map side. In this type of join the large relation
is followed by one or more small relations. The small relations must be small enough to fit
into main memory; if they don't, the process fails and an error is generated.

10.1.1 Usage

Perform a replicated join with the USING clause (see JOIN (inner) and JOIN (outer)). In
this example, a large relation is joined with two smaller relations. Note that the large relation
comes first followed by the smaller relations; and, all small relations together must fit into
main memory, otherwise an error is generated.

big = LOAD 'big_data' AS (b1,b2,b3);

tiny = LOAD 'tiny_data' AS (t1,t2,t3);

mini = LOAD 'mini_data' AS (m1,m2,m3);

C = JOIN big BY b1, tiny BY t1, mini BY m1 USING 'replicated';

10.1.2 Conditions

Fragment replicate joins are experimental; we don't have a strong sense of how small the
small relation must be to fit into memory. In our tests with a simple query that involves just
a JOIN, a relation of up to 100 M can be used if the process overall gets 1 GB of memory.
Please share your observations and experience with us.

In order to avoid replicated joins on large relations, we fail if size of relation(s) to be
replicated (in bytes) is greater than pig.join.replicated.max.bytes (default = 1GB).

10.2 Bloom Joins

Bloom join is a special type of join where a bloom filter is constructed using join keys of
one relation and used to filter records of the other relations before doing a regular hash join.
The amount of data sent to the reducers will be a lot less depending up on the numbers of
records that are filtered on the map side. Bloom join is very useful in cases where the number
of matching records between relations in a join are comparatively less compared to the total
records allowing many to be filtered before the join. Before bloom join was added as a type
of join, same functionality was achieved by users by using the builtin bloom udfs which
is not as efficient and required more lines of code as well. Currently bloom join is only

basic.html#join-inner
basic.html#join-outer
func.html#bloom

Performance and Efficiency

Page 27Copyright © 2007 The Apache Software Foundation. All rights reserved.

implemented in Tez execution mode. Builtin bloom udfs have to be used for other execution
modes.

10.2.1 Usage

Perform a bloom join with the USING clause (see JOIN (inner) and JOIN (outer)). In this
example, a large relation is joined with two smaller relations. Note that the large relation
comes first followed by the smaller relations. Bloom filter is built from join keys of the right
most relation which is small and the filter is applied on the big and medium relations. None
of the relations are required to fit into main memory.

big = LOAD 'big_data' AS (b1,b2,b3);

medium = LOAD 'medium_data' AS (m1,m2,m3);

small = LOAD 'small_data' AS (s1,s2,s3);

C = JOIN big BY b1, medium BY m1, small BY s1 USING 'bloom';

In the case of inner join and right outer join, the right most relation is used for building
the bloom filter and the users are expected to specify the smaller dataset as the right most
relation. But in the case of left outer join, the left most relation is used for building the bloom
filter and is expected to be the smaller dataset. This is because all records of the outer relation
should be in the result and no records can be filtered. If the left relation turns out to be the
bigger dataset, it would not be as efficient to build the bloom filter on the bigger dataset. But
it might still perform better than a regular join if it is able to filter lot of records from the
right relation.

big = LOAD 'big_data' AS (b1,b2,b3);

small = LOAD 'small_data' AS (m1,m2,m3);

C = JOIN small BY s1 LEFT, big BY b1 USING 'bloom';

10.2.2 Conditions

• Bloom join cannot be used with a FULL OUTER join.
• If the the underlying data is sufficiently skewed, bloom join might not help. Skewed join

can be considered for those cases.

10.2.3 Tuning options

There are multiple pig properties than can be configured to construct a more efficient bloom
filter. See Bloom Filter for a discussion of how to select the number of bits and the number
of hash functions. Easier option would be to search for "bloom filter calculator" in a search

basic.html#join-inner
basic.html#join-outer
start.html#properties
http://en.wikipedia.org/wiki/Bloom_filter

Performance and Efficiency

Page 28Copyright © 2007 The Apache Software Foundation. All rights reserved.

engine and use one of the online bloom filter calculators available to arrive at the desired
values.

• pig.bloomjoin.strategy - The valid values for this are 'map' and 'reduce'. Default value
is map. Bloom join has two different kind of implementations to be more efficient in
different cases. In general, there is an extra reduce step in the DAG for construction of
the bloom filter(s).
• map - In each map, bloom filters are computed on the join keys partitioned by

the hashcode of the key with pig.bloomjoin.num.filters number of partitions.
Bloom filters for each partition from different maps are then combined in
the reducers producing one bloom filter per partition. The default value of
pig.bloomjoin.num.filters is 1 for this strategy and so usually only one bloom filter
is created. This is efficient and fast if there are smaller number of maps (<10) and
the number of distinct keys are not too high. It can be faster with larger number of
maps and even with bigger bloom vector sizes, but the amount of data shuffled to the
reducer for aggregation becomes huge making it inefficient.

• reduce - Join keys are sent from the map to the reducer partitioned by hashcode of the
key with pig.bloomjoin.num.filters number of partitions. In the reducers, one bloom
filter is then computed per partition. Number of reducers are set equal to the number
of partitions allowing for each bloom filter to be computed in parallel. The default
value of pig.bloomjoin.num.filters is 11 for this strategy. This is efficient for larger
datasets with lot of maps or very large bloom vector size. In this case size of keys sent
to the reducer is smaller than sending bloom filters to reducer for aggregation making
it efficient.

• pig.bloomjoin.num.filters - The number of bloom filters that will be created. Default is 1
for map strategy and 11 for reduce strategy.

• pig.bloomjoin.vectorsize.bytes - The size in bytes of the bit vector to be used for the
bloom filter. A bigger vector size will be needed when the number of distinct keys is
higher. Default value is 1048576 (1MB).

• pig.bloomjoin.hash.functions - The type of hash function to use. Valid values are 'jenkins'
and 'murmur'. Default is murmur.

• pig.bloomjoin.hash.types - The number of hash functions to be used in bloom
computation. It determines the probability of false positives. Higher the number lower the
false positives. Too high a value can increase the cpu time. Default value is 3.

10.3 Skewed Joins

Parallel joins are vulnerable to the presence of skew in the underlying data. If the underlying
data is sufficiently skewed, load imbalances will swamp any of the parallelism gains. In order
to counteract this problem, skewed join computes a histogram of the key space and uses this
data to allocate reducers for a given key. Skewed join does not place a restriction on the size

Performance and Efficiency

Page 29Copyright © 2007 The Apache Software Foundation. All rights reserved.

of the input keys. It accomplishes this by splitting the left input on the join predicate and
streaming the right input. The left input is sampled to create the histogram.

Skewed join can be used when the underlying data is sufficiently skewed and you need a
finer control over the allocation of reducers to counteract the skew. It should also be used
when the data associated with a given key is too large to fit in memory.

10.3.1 Usage

Perform a skewed join with the USING clause (see JOIN (inner) and JOIN (outer)).

A = LOAD 'skewed_data' AS (a1,a2,a3);
B = LOAD 'data' AS (b1,b2,b3);
C = JOIN A BY a1, B BY b1 USING 'skewed';

10.3.2 Conditions

Skewed join will only work under these conditions:

• Skewed join works with two-table inner and outer join. Currently we do not support more
than two tables for skewed join. Specifying three-way (or more) joins will fail validation.
For such joins, we rely on you to break them up into two-way joins.

• The skewed table must be specified as the left table. Pig samples on that table and
determines the number of reducers per key.

• The pig.skewedjoin.reduce.memusage Java parameter specifies the fraction of heap
available for the reducer to perform the join. A low fraction forces Pig to use more
reducers but increases copying cost. We have seen good performance when we set this
value in the range 0.1 - 0.4. However, note that this is hardly an accurate range. Its value
depends on the amount of heap available for the operation, the number of columns in the
input and the skew. An appropriate value is best obtained by conducting experiments to
achieve a good performance. The default value is 0.5.

• Skewed join does not address (balance) uneven data distribution across reducers.
However, in most cases, skewed join ensures that the join will finish (however slowly)
rather than fail.

10.4 Merge Joins

Often user data is stored such that both inputs are already sorted on the join key. In this
case, it is possible to join the data in the map phase of a MapReduce job. This provides a
significant performance improvement compared to passing all of the data through unneeded
sort and shuffle phases.

Pig has implemented a merge join algorithm, or sort-merge join. It works on pre-sorted data,
and does not sort data for you. See Conditions, below, for restrictions that apply when using

basic.html#join-inner
basic.html#join-outer

Performance and Efficiency

Page 30Copyright © 2007 The Apache Software Foundation. All rights reserved.

this join algorithm. Pig implements the merge join algorithm by selecting the left input of the
join to be the input file for the map phase, and the right input of the join to be the side file. It
then samples records from the right input to build an index that contains, for each sampled
record, the key(s) the filename and the offset into the file the record begins at. This sampling
is done in the first MapReduce job. A second MapReduce job is then initiated, with the left
input as its input. Each map uses the index to seek to the appropriate record in the right input
and begin doing the join.

10.4.1 Usage

Perform a merge join with the USING clause (see JOIN (inner) and JOIN (outer)).

C = JOIN A BY a1, B BY b1, C BY c1 USING 'merge';

10.4.2 Conditions

Condition A

Inner merge join (between two tables) will only work under these conditions:

• Data must come directly from either a Load or an Order statement.
• There may be filter statements and foreach statements between the sorted data source and

the join statement. The foreach statement should meet the following conditions:
• The foreach statement should not change the position of the join keys.
• There should be no transformation on the join keys which will change the sort order.
• UDFs also have to adhere to the previous condition and should not transform the

JOIN keys in a way that would change the sort order.
• Data must be sorted on join keys in ascending (ASC) order on both sides.
• If sort is provided by the loader, rather than an explicit Order operation, the right-side

loader must implement either the {OrderedLoadFunc} interface or {IndexableLoadFunc}
interface.

• Type information must be provided for the join key in the schema.

The PigStorage loader satisfies all of these conditions.

Condition B

Outer merge join (between two tables) and inner merge join (between three or more tables)
will only work under these conditions:

• No other operations can be done between the load and join statements.
• Data must be sorted on join keys in ascending (ASC) order on both sides.
• Left-most loader must implement {CollectableLoader} interface as well as

{OrderedLoadFunc}.

basic.html#join-inner
basic.html#join-outer

Performance and Efficiency

Page 31Copyright © 2007 The Apache Software Foundation. All rights reserved.

• All other loaders must implement {IndexableLoadFunc}.
• Type information must be provided for the join key in the schema.

Pig does not provide a loader that supports outer merge joins. You will need to build your
own loader to take advantage of this feature.

10.5 Merge-Sparse Joins

Merge-Sparse join is a specialization of merge join. Merge-sparse join is intended for use
when one of the tables is very sparse, meaning you expect only a small number of records to
be matched during the join. In tests this join performed well for cases where less than 1% of
the data was matched in the join.

10.5.1 Usage

Perform a merge-sparse join with the USING clause (see JOIN (inner)).

a = load 'sorted_input1' using org.apache.pig.piggybank.storage.IndexedStorage('\t', '0');
b = load 'sorted_input2' using org.apache.pig.piggybank.storage.IndexedStorage('\t', '0');
c = join a by $0, b by $0 using 'merge-sparse';
store c into 'results';

10.5.2 Conditions

Merge-sparse join only works for inner joins and is not currently implemented for outer
joins.

For inner joins, the preconditions are the same as for merge join with the exception of
constrains on the right-side loader. For sparse-merge joins the loader must implement
IndexedLoadFunc or the join will fail.

Piggybank now contains a load function called
org.apache.pig.piggybank.storage.IndexedStorage that is a derivation of PigStorage
and implements IndexedLoadFunc. This is the only loader included in the standard Pig
distribution that can be used for merge-sparse join.

10.6 Performance Considerations

Note the following:

• If one of the data sets is small enough to fit into memory, a Replicated Join is very likely
to provide better performance.

basic.html#join-inner

Performance and Efficiency

Page 32Copyright © 2007 The Apache Software Foundation. All rights reserved.

• You will also see better performance if the data in the left table is partitioned evenly
across part files (no significant skew and each part file contains at least one full block of
data).

	Table of contents
	1 Tez mode
	1.1 How to enable Tez
	1.2 Tez DAG generation
	1.3 Tez session/container reuse
	1.4 Automatic parallelism
	1.5 API change
	1.6 Known issues

	2 Timing your UDFs
	3 Combiner
	3.1 When the Combiner is Used
	3.2 When the Combiner is Not Used

	4 Hash-based Aggregation in Map Task
	5 Memory Management
	6 Reducer Estimation
	7 Multi-Query Execution
	7.1 Turning it On or Off
	7.2 How it Works
	7.2.1 Explicit and Implicit Splits
	7.2.2 Storing Intermediate Results

	7.3 Store vs. Dump
	7.4 Error Handling
	7.5 Backward Compatibility
	7.6 Implicit Dependencies
	7.6.1 Example
	7.6.2 Example

	8 Optimization Rules
	8.1 PartitionFilterOptimizer
	8.2 PredicatePushdownOptimizer
	8.3 ConstantCalculator
	8.4 SplitFilter
	8.5 PushUpFilter
	8.6 MergeFilter
	8.7 PushDownForEachFlatten
	8.8 LimitOptimizer
	8.9 ColumnMapKeyPrune
	8.10 AddForEach
	8.11 MergeForEach
	8.12 GroupByConstParallelSetter

	9 Performance Enhancers
	9.1 Use Optimization
	9.2 Use Types
	9.3 Project Early and Often
	9.4 Filter Early and Often
	9.5 Reduce Your Operator Pipeline
	9.6 Make Your UDFs Algebraic
	9.7 Use the Accumulator Interface
	9.8 Drop Nulls Before a Join
	9.9 Take Advantage of Join Optimizations
	9.10 Use the Parallel Features
	9.11 Use the LIMIT Operator
	9.12 Prefer DISTINCT over GROUP BY/GENERATE
	9.13 Compress the Results of Intermediate Jobs
	9.14 Combine Small Input Files
	9.15 Direct Fetch
	9.16 Auto Local Mode
	9.17 User Jar Cache

	10 Specialized Joins
	10.1 Replicated Joins
	10.1.1 Usage
	10.1.2 Conditions

	10.2 Bloom Joins
	10.2.1 Usage
	10.2.2 Conditions
	10.2.3 Tuning options

	10.3 Skewed Joins
	10.3.1 Usage
	10.3.2 Conditions

	10.4 Merge Joins
	10.4.1 Usage
	10.4.2 Conditions

	10.5 Merge-Sparse Joins
	10.5.1 Usage
	10.5.2 Conditions

	10.6 Performance Considerations

