Built In Functions

Table of contents

I g1 0o 1 (o] o PSSP 2
2 DYNAMIC INVOKENS......c.tiieieiieesieeiesiese et te s s et este e s s e sseenteeseesseeneaneesneenaeeneenren 2
3 EVEAl FUNCLIONS......ciiiieece ettt ee e se e sne e seenteeneesneenne e 3
4 L0Ad/SEOIE FUNCLIONS.......cceeiteeieeiesiee st ete sttt sttt ee s e sne e e seesbeentesneesseeneeens 21
5 Math FUNCLIONS........coiiiiiiieieee ettt st b ettt e e e s neenaeeneas 41
B SEING FUNCLIONS.......oitiiiie ettt sttt s e et e s e e e te e saa e e beesnneereesnneenns 52
7 DAtetime FUNCLIONS........oouiiieitisiesiieiieceee sttt st st e et e sbe e 64
8 Tuple, Bag, Map FUNCLIONS..........ccoueieiiesiese ettt ee e ste e e e e e s sseeneesneens 74

O HIVE UDF ...t b e bbbt e et e b 78

Built In Functions

1 Introduction

Pig comes with a set of built in functions (the eval, |load/store, math, string, bag and tuple
functions). Two main properties differentiate built in functions from user defined functions
(UDFs). Firgt, built in functions don't need to be registered because Pig knows where they
are. Second, built in functions don't need to be qualified when they are used because Pig
knows where to find them.

2 Dynamic Invokers

Often you may need to use asimple function that is already provided by standard Java
libraries, but for which a user defined functions (UDF) has not been written. Dynamic
invokers allow you to refer to Java functions without having to wrap them in custom UDFs,
at the cost of doing some Java reflection on every function call.

DEFI NE Ur| Decode | nvokeFor String('java.net.URLDecoder. decode', 'String String');
encoded_strings = LOAD 'encoded_strings.txt' as (encoded: chararray);
decoded_strings = FOREACH encoded_stri ngs GENERATE Ur| Decode(encoded, 'UTF-8');

Currently, dynamic invokers can be used for any static function that:

» Accepts no arguments or accepts some combination of strings, ints, longs, doubles, floats,
or arrays with these same types
* Returnsastring, anint, along, adouble, or afloat

Only primitives can be used for numbers; no capital-letter numeric classes can be used
as arguments. Depending on the return type, a specific kind of invoker must be used:
InvokeForString, InvokeForlint, InvokeForLong, InvokeForDouble, or InvokeForFloat.

The DEFINE statement is used to bind a keyword to a Java method, as above. The first
argument to the InvokeFor* constructor is the full path to the desired method. The second
argument is a space-delimited ordered list of the classes of the method arguments. This can
be omitted or an empty string if the method takes no arguments. Valid class names are string,
long, float, double, and int. Invokers can also work with array arguments, represented in Pig
as DataBags of single-tuple elements. Simply refer to string[], for example. Class names are
not case sensitive.

The ability to use invokers on methods that take array arguments makes methods like those
in org.apache.commons.math.stat.StatUtils avail able (for processing the results of grouping
your datasets, for example). Thisis helpful, but aword of caution: the resulting UDF will not
be optimized for Hadoop, and the very significant benefits one gains from implementing the
Algebraic and Accumulator interfaces are lost here. Be careful if you use invokers this way.

Page 2

udf.html
udf.html
basic.html#define

Built In Functions

3 Eval Functions

3.1AVG

Computes the average of the numeric valuesin a single-column bag.

3.1.1 Syntax
AV G(expression)
3.1.2 Terms
expression Any expression whose result is a bag. The elements
of the bag should be datatypeint, long, float, double,
bigdecimal, biginteger or bytearray.
3.1.3 Usage

Use the AV G function to compute the average of the numeric values in a single-column bag.
AV G requires a preceding GROUP ALL statement for global averages and a GROUP BY
statement for group averages.

The AVG function ignores NULL values.

3.1.4 Example

In this example the average GPA for each student is computed (see the GROUP operator for
information about the field namesin relation B).

Page 3

basic.html#group

Built In Functions

({(John), (John), (John), (John)}, 3. 850000023841858)
({(Mary), (Mary), (Mary), (Mary)}, 3. 925000011920929)

3.1.5 Types Tables

int long float double bigdecimal biginteger chararray | bytearray
AVG double double double double bigdecimal bigdecimal error cast as
* * double

* Average values for datatypes bigdecimal and biginteger have precision setting
java.math.MathContext. DECIMAL 128.

3.2 BagToString

Concatenate the elements of a Bag into a chararray string, placing an optional delimiter
between each value.

3.2.1 Syntax

BagToString(vals:bag [, delimiter:chararray])

3.2.2 Terms
vals A bag of arbitrary values. They will each be cast to
chararray if they are not already.
delimiter A chararray value to place between elements of the
bag; defaults to underscore' ' .
3.2.3 Usage

BagToString creates a single string from the elements of a bag, similar to SQL's
GROUP_CONCAT function. Keep in mind the following:

» Bagscan be of arbitrary size, while strings in Java cannot: you will either exhaust
available memory or exceed the maximum number of characters (about 2 billion). One
of the worst features a production job can have is thresholding behavior: everything will
seem nearly fine until the data size of your largest bag grows from nearly-too-big to just-
barely-too-big.

» Bagsaredisordered unless you explicitly apply anested ORDER BY operation as
demonstrated below. A nested FOREACH will preserve ordering, letting you order by one
combination of fields then project out just the values you'd like to concatenate.

Page 4

http://docs.oracle.com/javase/7/docs/api/java/math/MathContext.html#DECIMAL128

Built In Functions

» Thedefault string conversion is applied to each element. If the bags contents are not
atoms (tuple, map, etc), this may be not be what you want. Use a nested FOREACH to
format values and then compose them with BagToString as shown below

Examples:

delimiter BagToString(vals,
delimiter)

{('"BOS"), (' NYA"), BOS_NYA _BAL If only one argument
('BAL")} isgiven, thefield
isdelimited with
underscore characters
{("BCS'), ("NYA), '|' BOS| NYA| BAL But you can supply your
('BAL")} own delimiter
{("BOS"), ("NYA"), "' BOSNYABAL Use an explicit empty
('BAL")} string to just smush
everything together
{(1),(2),(3)} e 11 2|3 Elements are type-
converted for you (but
see examples below)

3.2.4 Examples
Simple delimited strings are simple:

The default handling of complex elements works, but probably isn't what you want.

Built In Functions

Instead, assemble it in pieces. In step 2, we sort on one field but process another; it remains
in the sorted order.

3.3 BagToTuple

Un-nests the elements of abag into atuple.

3.3.1 Syntax

BagToTuple(expression)

3.3.2 Terms

expression An expression with data type bag.

3.3.3 Usage

BagToTuple creates a tuple from the elements of abag. It removes only the first level of
nesting; it does not recursively un-nest nested bags. Unlike FLATTEN, BagToTuple will not
generate multiple output records per input record.

3.3.4 Examples

In this example, a bag containing tuples with one field is converted to atuple.

Built In Functions

In this example, a bag containing tuples with two fields is converted to atuple.

3.4 Bloom

Bloom filters are a common way to select alimited set of records before moving datafor a
join or other heavy weight operation.

3.4.1 Syntax
BuildBloom(String hashType, String mode, String vectorSize, String nbHash)
Bloom(String filename)
3.4.2Terms
hashtype The type of hash function to use. Valid values for the
hash functions are ‘jenkins’ and ‘murmur’.
mode Will be ignored, though by convention it should be
"fixed" or "fixedsize"
vectorSize The number of bitsin the bloom filter.
nbHash The number of hash functions used in constructing
the bloom filter.
filename File containing the serialized Bloom filter.

See Bloom Filter for adiscussion of how to select the number of bits and the number of hash
functions.

Page 7

http://en.wikipedia.org/wiki/Bloom_filter

Built In Functions

3.4.3 Usage

Bloom filters are a common way to select alimited set of records before moving data for a
join or other heavy weight operation. For example, if one wanted to join avery large data set
L with asmaller set S, and it was known that the number of keysin L that will match with
Sissmall, building a bloom filter on S and then applying it to L before the join can greatly
reduce the number of records from L that have to be moved from the map to the reduce, thus
speeding the join.

The implementation uses Hadoop's bloom filters (org.apache.hadoop.util.bloom.BloomFilter)
internally.

3.4.4 Examples

3.5 CONCAT

Concatenates two or more expressions of identical type.
3.5.1 Syntax

CONCAT (expression, expression, [...expression])

3.5.2 Terms
expression Any expression.
3.5.3 Usage

Use the CONCAT function to concatenate two or more expressions. The result values of the
expressions must have identical types.

If any subexpression is null, the resulting expression is null.

Page 8

Built In Functions

3.5.4 Example

In this example, fields f1, an underscore string literal, f2 and f3 are concatenated.

3.6 COUNT

Computes the number of elementsin a bag.

3.6.1 Syntax

COUNT (expression)

3.6.2 Terms

expression An expression with data type bag.

3.6.3 Usage

Use the COUNT function to compute the number of elementsin abag. COUNT requires a
preceding GROUP ALL statement for global counts and a GROUP BY statement for group
counts.

The COUNT function follows syntax semantics and ignores nulls. What this meansisthat a
tuple in the bag will not be counted if the FIRST FIELD in thistupleis NULL. If you want to
include NULL valuesin the count computation, use COUNT_STAR.

Note: Y ou cannot use the tuple designator (*) with COUNT; that is, COUNT(*) will not
work.

3.6.4 Example

In this example the tuples in the bag are counted (see the GROUP operator for information
about the field namesin relation B).

Page 9

basic.html#group

Built In Functions

3.6.5 Types Tables

int long float double chararray bytearray

COUNT long long long long long long

3.7 COUNT_STAR

Computes the number of elements in a bag.

3.7.1 Syntax

COUNT_STAR(expression)

3.7.2 Terms
expression An expression with data type bag.
3.7.3 Usage

Use the COUNT_STAR function to compute the number of elementsin a bag.
COUNT _STAR requires a preceding GROUP ALL statement for global counts and a
GROUP BY statement for group counts.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 10

Built In Functions

COUNT_STAR includes NULL values in the count computation (unlike COUNT, which
ignores NULL values).

3.7.4 Example
In this example COUNT_STAR is used to count the tuplesin a bag.

3.8 DIFF

Compares two fieldsin atuple.

3.8.1 Syntax

DIFF (expression, expression)

3.8.2 Terms
expression An expression with any data type.
3.8.3 Usage

The DIFF function takes two bags as arguments and compares them. Any tuplesthat arein
one bag but not the other are returned in abag. If the bags match, an empty bag is returned.
If the fields are not bags then they will be wrapped in tuples and returned in abag if they do
not match, or an empty bag will be returned if the two records match. The implementation
assumes that both bags being passed to the DIFF function will fit entirely into memory
simultaneoudly. If thisis not the case the UDF will still function but it will be VERY slow.

3.8.4 Example

In this example DIFF compares the tuples in two bags.

Page 11

Built In Functions

3.9 IsEmpty
Checksif abag or map is empty.

3.9.1 Syntax

| SEmpty(expression)

3.9.2 Terms

expression An expression with any data type.

3.9.3 Usage

The IsEmpty function checks if abag or map is empty (has no data). The function can be
used to filter data.

3.9.4 Example

In this example al students with an SSN but no name are located.

3.10 MAX

Computes the maximum of the numeric values or chararrays in a single-column bag. MAX
requires a preceding GROUP ALL statement for global maximums and a GROUP BY
statement for group maximums.

3.10.1 Syntax

MAX (expression)

Page 12

Built In Functions

3.10.2 Terms
expression An expression with data types int, long, float, double,
bigdecimal, biginteger, chararray, datetime or
bytearray.
3.10.3 Usage

Use the MAX function to compute the maximum of the numeric values or chararraysin a

single-column bag.

The MAX function ignores NULL values.

3.10.4 Example

In this example the maximum GPA for all termsis computed for each student (see the
GROUP operator for information about the field namesin relation B).

3.10.5 Types Tables

int

long

float

double

bigdecime biginteger chararray datetime = bytearray

MAX

int

long

float

double

bigdecime biginteger chararray datetime cast as
double

Page 13

Built In Functions

3.11 MIN

Computes the minimum of the numeric values or chararraysin a single-column bag. MIN
requires a preceding GROUP... ALL statement for global minimums and a GROUP ... BY
statement for group minimums.

3.11.1 Syntax
MIN(expression)
3.11.2 Terms
expression An expression with datatypesint, long, float, double,
bigdecimal, biginteger, chararray, datetime or
bytearray.
3.11.3 Usage

Use the MIN function to compute the minimum of a set of numeric values or chararraysin a
single-column bag.

The MIN function ignores NULL values.

3.11.4 Example

In this example the minimum GPA for all termsis computed for each student (see the
GROUP operator for information about the field names in relation B).

Page 14

Built In Functions

3.11.5 Types Tables

int long float double bigdecime biginteger chararray datetime = bytearray
MIN int long float double bigdecime biginteger chararray datetime cast as
double

3.12 PluckTuple

Allows the user to specify a string prefix, and then filter for the columnsin arelation that
begin with that prefix or match that regex pattern. Optionally, include flag ‘false' to filter for
columns that do not match that prefix or match that regex pattern

3.12.1 Syntax

DEFINE pluck PluckTuple(expressionl)
DEFINE pluck PluckTuple(expressionl,expression3)
pluck(expression2)

3.12.2 Terms

expressionl A prefix to pluck by or an regex pattern to pluck by

expression2 Thefieldsto apply the pluck to, usually "'

expression3 A boolean flag to indicate whether to include or
exclude matching columns

3.12.3 Usage

Example:

Page 15

Built In Functions

3.13 SIZE
Computes the number of elements based on any Pig data type.

3.13.1 Syntax

SIZE(expression)

3.13.2 Terms

expression An expression with any data type.

3.13.3 Usage

Use the SIZE function to compute the number of elements based on the data type (see the
Types Tables below). SIZE includes NULL valuesin the size computation. SIZE is not
algebraic.

If the tested object is null, the SIZE function returns null.

3.13.4 Example

In this example the number of charactersin thefirst field is computed.

3.13.5 Types Tables

int returns 1

long returns 1

float returns 1

double returns 1

chararray returns number of charactersin the array
bytearray returns number of bytesin the array

Page 16

Built In Functions

tuple returns number of fieldsin the tuple
bag returns number of tuplesin bag
map returns number of key/value pairsin map

3.14 SUBTRACT
Bags subtraction, SUBTRACT (bagl, bag2) = bags composed of bagl elements not in bag2

3.14.1 Syntax

SUBTRACT (expression, expression)

3.14.2 Terms
expression An expression with data type bag.
3.14.3 Usage

SUBTRACT takes two bags as arguments and returns a new bag composed of the tuples of
first bag are not in the second bag.

If null, bag arguments are replaced by empty bags.

If arguments are not bags, an |OException is thrown.

The implementation assumes that both bags being passed to the SUBTRACT function will fit

entirely into memory simultaneousdly, if thisis not the case, SUBTRACT will still function
but will be very slow.

3.14.4 Example

In this example, SUBTRACT creates a new bag composed of B1 elementsthat are not in B2.

Page 17

Built In Functions

3.15 SUM

Computes the sum of the numeric valuesin a single-column bag. SUM requires a preceding
GROUP ALL statement for global sums and a GROUP BY statement for group sums.

3.15.1 Syntax
SUM (expression)
3.15.2 Terms
expression An expression with datatypesint, long, float, double,
bigdecimal, biginteger or bytearray cast as double.
3.15.3 Usage

Use the SUM function to compute the sum of a set of numeric values in a single-column bag.
The SUM function ignores NULL values.

3.15.4 Example

In this example the number of petsis computed. (see the GROUP operator for information
about the field namesin relation B).

Page 18

3.15.5 Types Tables

Built In Functions

int long float double bigdecima biginteger chararray = bytearray
SUM long long double double bigdecimal biginteger = error cast as
double
3.16 IN

IN operator allows you to easily test if an expression matches any valuein alist of values. It
is used to reduce the need for multiple OR conditions.

3.16.1 Syntax

IN (expression)

3.16.2 Terms
expression An expression with data types chararray, int, long,
float, double, bigdecimal, biginteger or bytearray.

3.16.3 Usage

IN operator allows you to easily test if an expression matches any valuein alist of values. It
is used to help reduce the need for multiple OR conditions.

3.16.4 Example

In this example we filter out ID 4 and 6.

Page 19

Built In Functions

In this example, we're passing a Biglnteger and using NOT operator, thereby negating the
passed list of fieldsin the IN clause

3.17 TOKENIZE
Splits astring and outputs a bag of words.

3.17.1 Syntax

TOKENIZE(expression [, 'field_delimiter])

3.17.2 Terms
expression An expression with data type chararray.
'field_delimiter' An optional field delimiter (in single quotes).
If field_delimiter is null or not passed, the following
will be used as delimiters: space|], double quote
["], coma[,] parenthesis[()], star [*].
3.17.3 Usage

Use the TOKENIZE function to split a string of words (all wordsin asingle tuple) into a bag
of words (each word in asingle tuple).

3.17.4 Example

In this example the strings in each row are split.

Page 20

Built In Functions

In this example afield delimiter is specified.

4 Load/Store Functions

L oad/store functions determine how data goes into Pig and comes out of Pig. Pig providesa
set of built-in load/store functions, described in the sections below. Y ou can aso write your
own load/store functions (see User Defined Functions).

4.1 Handling Compression

Support for compression is determined by the load/store function. PigStorage and
TextLoader support gzip and bzip compression for both read (load) and write (store).
BinStorage does not support compression.

To work with gzip compressed files, input/output files need to have a .gz extension. Gzipped
files cannot be split across multiple maps; this means that the number of maps created is
equal to the number of part filesin the input location.

To work with bzip compressed files, the input/output files need to have a .bz or .bz2
extension. Because the compression is block-oriented, bzipped files can be split across
multiple maps.

Note: PigStorage and TextLoader correctly read compressed files as long as they are NOT
CONCATENATED bz/bz2 FILES generated in this manner:

cat *.bz > text/concat.bz
cat *.bz2 > text/concat.bz2

Page 21

udf.html

Built In Functions

If you use concatenated bzip files with your Pig jobs, you will NOT see afailure but the
results will be INCORRECT.

4.2 BinStorage
Loads and stores data in machine-readable format.

4.2.1 Syntax

BinStorage()

4.2.2 Terms

none no parameters

4.2.3 Usage

Pig uses BinStorage to load and store the temporary data that is generated between multiple
MapReduce jobs.

» BinStorage works with data that is represented on disk in machine-readable format.
BinStorage does NOT support compression.
* BinStorage supports multiple locations (files, directories, globs) as input.

Occasionally, users use BinStorage to store their own data. However, because BinStorage is
aproprietary binary format, the original datais never in BinStorage - it is always aderivation
of some other data.

We have seen several examples of users doing something like this:

a =1load 'b.txt' as (id, f);
b = group a by id;
store b into 'g' using BinStorage();

And then later:

a load 'g/part*' using BinStorage() as (id, d:bag{t:(v, s)});
b foreach a generate (double)id, flatten(d);
dunp b;

There is a problem with this sequence of events. The first script does not define data types
and, asthe result, the data is stored as a bytearray and a bag with a tuple that contains two
bytearrays. The second script attempts to cast the bytearray to double; however, since the
data originated from a different loader, it has no way to know the format of the bytearray or
how to cast it to a different type. To solve this problem, Pig:

Page 22

Built In Functions

» Sends an error message when the second script is executed: "ERROR 1118: Cannot cast
bytes |loaded from BinStorage. Please provide a custom converter."
» Allowsyou to use a custom converter to perform the casting.

4.2.4 Examples
In this example BinStorage is used with the LOAD and STORE functions.

In this example BinStorage is used to load multiple locations.

BinStorage does not track data lineage. When Pig uses BinStorage to move data between
MapReduce jobs, Pig can figure out the correct cast function to use and apply it. However, as
shown in the example below, when you store data using BinStorage and then use a separate
Pig Latin script to read data (thus loosing the type information), it is your responsibility to
correctly cast the data before storing it using BinStorage.

Built In Functions

4.3 JsonLoader, JsonStorage

Load or store JSON data.
4.3.1 Syntax

JsonLoader(['schema])
JsonStorage()

4.3.2 Terms

schema An optional Pig schema, in single quotes.

4.3.3 Usage

Use JsonL oader to load JSON data.

Use JsonStorage to store JSON data.

Note that there is no concept of delimit in JsonL oader or JsonStorage. The datais encoded in
standard JSON format. JsonL oader optionally takes a schema as the construct argument.

4.3.4 Examples

In this example data is loaded with a schema.

In this example datais |oaded without a schema; it assumes there isa.pig_schema (produced
by JsonStorage) in the input directory.

4.4 PigDump
Stores datain UTF-8 format.

4.4.1 Syntax

PigDump()

Page 24

Built In Functions

4.4.2 Terms
none no parameters
4.4.3 Usage
PigDump stores data as tuples in human-readable UTF-8 format.
4.4.4 Example
In this example PigDump is used with the STORE function.
STORE X | NTO ' out put' USI NG Pi gDunmp() ;
4.5 PigStorage
L oads and stores data as structured text files.

4.5.1 Syntax

PigStorage([field_delimiter] , ['options])

4.5.2 Terms
field_delimiter The default field delimiter is tab (‘\t").
Y ou can specify other characters as field delimiters;
however, be sure to encase the charactersin single
quotes.
‘'options A string that contains space-separated options

(‘optionA optionB optionC")
Currently supported options are:

e (‘schema) - Stores the schema of therelation
using a hidden JSON file.

e ('noschema) - Ignores a stored schema during
the load.

» (‘tagsource) - (deprecated, Use tagPath instead)
Add afirst column indicates the input file of the
record.

e (‘tagPath’) - Add afirst column indicates the
input path of the record.

e (‘tagFile) - Add afirst column indicates the input
file name of the record.

Page 25

Built In Functions

4.5.3 Usage

PigStorage is the default function used by Pig to load/store the data. PigStorage supports
structured text files (in human-readable UTF-8 format) in compressed or uncompressed form
(see Handling Compression). All Pig data types (both simple and complex) can be read/
written using this function. The input data to the load can be afile, adirectory or aglob.

L oad/Stor e Statements

L oad statements — PigStorage expects data to be formatted using field delimiters, either the
tab character ('\t') or other specified character.

Store statements — PigStorage outputs data using field delimiters, either the tab character (‘\t')
or other specified character, and the line feed record delimiter (\n’).

Field/Record Delimiters

Field Delimiters — For load and store statements the default field delimiter is the tab character
(\t"). You can use other characters as field delimiters, but separators such as A or Ctrl-A
should be represented in Unicode (\u0001) using UTF-16 encoding (see Wikipedia ASCII,
Unicode, and UTF-16).

Record Deliminters — For load statements Pig interprets the line feed ('\n'), carriage return
("\r" or CTRL-M) and combined CR + LF ('\r\n') characters as record delimiters (do not use
these characters as field delimiters). For store statements Pig uses the line feed (\n') character
asthe record delimiter.

Schemas

If the schema option is specified, ahidden ".pig_schema’ fileis created in the output
directory when storing data. It is used by PigStorage (with or without -schema) during
loading to determine the field names and types of the data without the need for a user to
explicitly provide the schemain an as clause, unless noschemna is specified. No attempt to
merge conflicting schemas is made during loading. The first schema encountered during a
file system scan is used.

Additionally, if the schema option is specified, a".pig_headers’ fileis created in the output
directory. Thisfile simply lists the delimited aliases. Thisisintended to make export to tools
that can read files with header lines easier (just cat the header to your data).

If the schema option is NOT specified, a schemawill not be written when storing data.

If the noschema option is NOT specified, and a schemais found, it gets loaded when loading
data.

Note that regardless of whether or not you store the schema, you always need to specify the
correct delimiter to read your data. If you store using delimiter "#" and then load using the
default delimiter, your data will not be parsed correctly.

Record Provenance

Page 26

basic.html#data-types
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-16

Built In Functions

If tagPath or tagFile option is specified, PigStorage will add a pseudo-column
INPUT_FILE PATH or INPUT_FILE_NAME respectively to the beginning of the record.
As the name suggests, it is the input file path/name containing this particular record. Please
note tagsource is deprecated.

Complex Data Types
The formats for complex data types are shown here:

* Tuple: enclosed by (), items separated by ",
* Non-empty tuple: (iteml,item2,item?3)
e Empty tupleisvalid: ()

» Bag: enclosed by {}, tuples separated by ","
* Non-empty bag: { code}{ (tuplel),(tuple2),(tuple3)}{ code}
* Empty bagisvalid: {}

» Map: enclosed by [], items separated by ",", key and value separated by "#"
* Non-empty map: [keyl#valuel key2#value?]
Empty mapisvalid: []

If load statement specify a schema, Pig will convert the complex type according to schema. If
conversion fails, the affected item will be null (see Nulls and Pig Latin).

4.5.4 Examples

In this example PigStorage expects input.txt to contain tab-separated fields and newline-
separated records. The statements are equival ent.

A = LOAD 'student' USING PigStorage('\t') AS (nanme: chararray, age:int, gpa: float);

A = LOAD 'student' AS (nane: chararray, age:int, gpa: float);

In this example PigStorage stores the contents of X into files with fields that are delimited
with an asterisk (*). The STORE statement specifies that the files will be located in
adirectory named output and that the fileswill be named part-nnnnn (for example,
part-00000).

STORE X | NTO 'output' USING PigStorage('*');

In this example, PigStorage |oads data with complex data type, a bag of map and double.

a =load '1.txt' as (a0:{t:(mmap[int], d:double)});

{([foo#1, bar#2], 34.0), ([whi t e#3, yel | ow#4],45.0)} : valid
{([foo#badi nt], baddoubl €)} : conversion fail for badint/baddouble, get {([foo#],)}
{} : valid, enpty bag

Page 27

basic.html#tuple
basic.html#bag
basic.html#map
basic.html#nulls

Built In Functions

4.6 TextLoader
Loads unstructured datain UTF-8 format.

4.6.1 Syntax

TextL oader()

4.6.2 Terms

none no parameters

4.6.3 Usage

TextLoader works with unstructured datain UTF8 format. Each resulting tuple contains a
single field with one line of input text. TextLoader also supports compression.

Currently, TextL oader support for compression is limited.
TextL oader cannot be used to store data.

4.6.4 Example
In this example TextLoader is used with the LOAD function.

A = LOAD 'data’ USI NG Text Loader () ;

4.7 HBaseStorage
Loads and stores data from an HBase table.

4.7.1 Syntax

HBaseStorage('columns, [‘options])

4.7.2 Terms

columns A list of qualified HBase columns to read data from
or store data to. The column family name and column
qualifier are seperated by acolon (:). Only the
columns used in the Pig script need to be specified.
Columns are specified in one of three different ways
as described below.

* Explicitly specify acolumn family and column
qualifier (e.g., user_info:id). Thiswill produce a
scalar in the resultant tuple.

Page 28

‘'options

Built In Functions

Specify a column family and a portion of column
qualifier name as a prefix followed by an asterisk
(i.e., user_info:address *). Thisapproachis

used to read one or more columns from the same
column family with a matching descriptor prefix.
The datatype for thisfield will be amap of
column descriptor name to field value. Note that
combining this style of prefix with along list of
fully qualified column descriptor names could
cause perfomance degredation on the HBase
scan. Thiswill produce a Pig map in the resultant
tuple with column descriptors as keys.

Specify al the columns of a column family using
the column family name followed by an asterisk
(i.e., user_info:*). Thiswill produce a Pig map

in the resultant tuple with column descriptors as
keys.

A string that contains space-separated options
(“-optionA=valueA -optionB=valueB -
optionC=valueC’)

Currently supported options are:

-loadK ey=(truelfalse) Load the row key as the
first value in every tuple returned from HBase
(default=false)

-gt=minKeyVal Return rows with arowKey
greater than minKeyVal

-lt=maxKeyVa Return rows with arowKey less
than maxKeyVal

-regex=regex Return rows with arowKey that
match thisregex on KeyVal

-gte=minKeyVa Return rows with arowKey
greater than or equal to minKeyVal
-lte=maxKeyVal Return rows with arowKey
less than or equal to maxKeyVal
-limit=numRowsPerRegion Max number of rows
to retrieve per region

-caching=numRows Number of rowsto cache
(faster scans, more memory)

-delim=delimiter Column delimiter in columns
list (default is whitespace)
-ignoreWhitespace=(truelfalse) When delim is
set to something other than whitespace, ignore
spaces when parsing column list (default=true)
-caster=(HBaseBinaryConverter|
Utf8StorageConverter) Class name

of Caster to useto convert values

Page 29

Built In Functions

(default=Utf8StorageConverter). The
default caster can be overridden with the
pig.hbase.caster config param. Casters must
implement LoadStoreCaster.

e -noWAL=(trueffalse) During storage, sets
the write ahead to false for faster loading
into HBase (default=false). To be used
with extreme caution since this could result
in data loss (see http://hbase.apache.org/
book.html#perf.hbase.client.putwal).

e -minTimestamp=timestamp Return cell values
that have a creation timestamp greater or equal to
thisvalue

e -maxTimestamp=timestamp Return cell values
that have a creation timestamp less than this
value

e -timestamp=timestamp Return cell values that
have a creation timestamp equal to thisvalue

e -includeTimestamp=Record will include the
timestamp after the rowkey on store (rowkey,
timestamp, ...)

e -includeTombstone=Record will include a
tombstone marker on store after the rowKey and
timestamp (if included) (rowkey, [timestamp,]
tombstone, ...)

4.7.3 Usage

HBaseStorage stores and loads data from HBase. The function takes two arguments. The
first argument is a space seperated list of columns. The second optional argument is a space
seperated list of options. Column syntax and available options are listed above. Note that
HBaseStorage always disable split combination.

4.7.4 Load Example
In this example HBaseStorage is used with the LOAD function with an explicit schema.

raw = LOAD ' hbase: // SoneTabl eNane'
USI NG or g. apache. pi g. backend. hadoop. hbase. HBaseSt or age(
"info:first_name info:last_nane tags:work_* info:*', '-loadKey=true -limt=5") AS
(id:bytearray, first_nanme:chararray, |ast_nane:chararray, tags_map: map[],
i nfo_map: map[]);

The datatypes of the columns are declared with the "AS" clause. Thefirst_name and
last_name columns are specified as fully qualified column names with a chararray datatype.
The third specification of tags:work_* requests a set of columnsin the tags column family
that begin with "work_". There can be zero, one or more columns of that type in the HBase

Page 30

http://hbase.apache.org/book.html#perf.hbase.client.putwal
http://hbase.apache.org/book.html#perf.hbase.client.putwal

Built In Functions

table. The typeis specified astags map:map[]. Thisindicates that the set of column values
returned will be accessed as a map, where the key is the column name and the value is the
cell value of the column. The fourth column specification is also a map of column descriptors
to cell values.

When the type of the column is specified asamap inthe"AS" clause, the map keys are the
column descriptor names and the data type is chararray. The datatype of the columns values
can be declared explicitly as shown in the examples below:

» tags map[chararray] - In this case, the column values are all declared to be of type
chararray
» tags map[int] - Inthis case, the column values are all declared to be of typeint.

4.7.5 Store Example

In this example HBaseStorage is used to store arelation into HBase.

A = LOAD ' hdfs_users' AS (id:bytearray, first_nane:chararray, |ast_name:chararray);
STORE A | NTO ' hbase://users_tabl e’ USING org. apache. pi g. backend. hadoop. hbase. HBaseSt or age(
‘info:first_nane info:last_nane');

In the example above relation A isloaded from HDFS and stored in HBase. Note that the
schema of relation A isatuple of size 3, but only two column descriptor names are passed to
the HBaseStorage constructor. Thisis because thefirst entry in the tupleis used as the HBase
rowKey.

4.8 AvroStorage

Loads and stores datafrom Avro files.
4.8.1 Syntax

AvroStorage(['schemalrecord name'], ['options])

4.8.2 Terms

schema A JSON string specifying the Avro schemafor
the input. Y ou may specify an explicit schema
when storing data or when loading data. When you
manually provide a schema, Pig will use the provided
schemafor serialization and deserialization. This
means that you can provide an explicit schemawhen
saving data to simplify the output (for example by
removing nullable unions), or rename fields. This
also means that you can provide an explicit schema

Page 31

record name

‘'options

Built In Functions

when reading data to only read a subset of the fields
in each record.

See _the Apache Avro Documentation for more
details on how to specify avalid schema.

When storing a bag of tuples with AvroStorage, if
you do not want to specify the full schema, you may
specify the avro record name instead. (AvroStorage
will determine that the argument isn't avalid schema
definition and use it as a variable name instead.)

A string that contains space-separated options (‘-
optionA valueA -optionB valueB -optionC ")

Currently supported options are:

e -namespace nameSpace or -n nameSpace
Explicitly specify the namespace field in Avro
records when storing data

e -schemfile schemaFile or -f schemalile Specify
the input (or output) schema from an external
file. Pig assumes that the file is located on
the default filesystem, but you may use an
explicity URL to unambigously specify the
location. (For example, if the data was on your
local file system in /stuff/schemafile.avsc, you
could specify "-f file:///stuff/schemafile.avsc"
to specify the location. If the data was on
HDFS under /yourdirectory/schemafile.avsc,
you could specify "-f hdfs.//lyourdirectory/
schemafile.avsc"). Pig expects thisto be atext
file, containing avalid avro schema.

e -examplefile exampleFile or -e exampleFile
Specify the input (or output) schema using
another Avro file as an example. Pig assumes
that the fileis located on the default filesystem,
but you may use and explicity URL to specify
the location. Pig expects thisto be an Avro data
file

e -alowrecursive or -r Specify whether to allow
recursive schema definitions (the default isto
throw an exception if Pig encounters arecursive
schema). When reading objects with recursive
definitions, Pig will translate Avro records to
schemarless tuples; the Pig Schemafor the
object may not match the data exactly.

e -doublecolons or -d Specify how to handle
Pig schemas that contain double-colons when
writing datain Avro format. (When you join

Page 32

http://avro.apache.org/docs/current/spec.html

Built In Functions

two bagsin Pig, Pig will automatically label

the fields in the output Tuples with names that
contain double-colons). If you select this option,
AvroStorage will translate names with double
colons into names with double underscores.

4.8.3 Usage

AvroStorage stores and loads data from Avro files. Often, you can load and store data using
AvroStorage without knowing much about the Avros serialization format. AvroStorage will
attempt to automatically transate a pig schema and pig datato avro data, or avro datato pig
data.

By default, when you use AvoStorage to load data, AvroStorage will use depth first search
to find avalid Avro file on the input path, then use the schema from that file to load the

data. When you use AvroStorage to store data, AvroStorage will attempt to translate the Pig
schemato an equivalent Avro schema. Y ou can manually specify the schema by providing
an explicit schemain Pig, loading a schemafrom an external schemafile, or explicitly telling
Pig to read the schemafrom a specific avrofile.

To compress your output with AvroStorage, you need to use the correct Avro properties for
compression. For example, to enable compression using deflate level 5, you would specify

SET avr o. out put . codec ' defl at e’
SET avro. mapred. defl ate. | evel 5

Valid values for avro.output.codec include deflate, snappy, and null.

There are afew key differences between Avro and Pig data, and in some casesit helpsto
understand the differences between the Avro and Pig data models. Before writing Pig data to
Avro (or creating Avro filesto use in Pig), keep in mind that there might not be an equivalent
Avro Schemafor every Pig Schema (and vice versa):

* Recursive schema definitions Y ou cannot define schemas recursively in Pig, but you
can define schemas recursively in Avro.

» Allowed characters Pig schemas may sometimes contain characters like colons (*:") that
areillegal in Avro names.

» UnionsIn Avro, you can define an object that may be one of several different types
(including complex types such as records). In Pig, you cannot.

* EnumsAvro allows you to define enums to efficiently and abstractly represent
categorical variable, but Pig does not.

* Fixed Length Byte Arrays Avro alows you to define fixed length byte arrays, but Pig
does not.

* Nullablevaluesin Pig, al types are nullable. In Avro, they are not.

Page 33

Hereis how AvroStorage translates Pig values to Avro:

Integers
Longs
Floats
Doubles
Strings
Bytes
Booleans

Tuples

Bags of Tuples

Maps

Hereis how AvroStorage translates Avro valuesto Pig:

Integers
Longs
Floats
Doubles
Strings

Enums

Bytes

Origina Pig Type
int

long

float

double

chararray
bytearray

boolean

tuple

bag

map

Original Avro Types
["int","null"] or "int"
["long,"null"] or "long"

["float","null"] or "float"

["double”,"null"] or "double"

["string","null"] or "string"

Either an enum or aunion of an

enum and null

["bytes’,"null"] or "bytes"

Built In Functions

Tranglated Avro Type
["int","null"]
["long,"null"]
["float","null"]
["double","null"]
["string”,"null"]
["bytes',"null"]
["boolean”,"null"]

The Pig Tuple schemawill be
tranglated to an union of and Avro
record with an equivalent schem
and null.

The Pig Tuple schemawill be
translated to a union of an array of
records with an equivalent schema
and null.

The Pig Tuple schemawill be
translated to a union of amap of
records with an eguivalent schema
and null.

Tranglated Pig Type
int

long

float

double

chararray

chararray

bytearray

Page 34

Built In Functions

Fixes Either afixed length byte array, or = bytearray
aunion of afixed length array and
null

Booleans ["boolean”,"null"] or "boolean" boolean

Tuples Either arecord type, or aunionor | tuple
arecord and null

Bags of Tuples Either an array, or aunion of an bag
array and null

Maps Either amap, or aunionof amap = map
and null

In many cases, AvroStorage will automatically translate your data correctly and you will not
need to provide any more information to AvroStorage. But sometimes, it may be convenient
to manually provide a schemato AvroStorge. See the example selection below for examples
on manually specifying a schemawith AvroStorage.

4.8.4 Load Examples

Suppose that you were provided with afile of avro data (located in 'stuff’) with the following
schema:

Additionally, suppose that you don't need the value of the field "marketingPlans.” (That's a
good thing, because AvroStorage doesn't know how to translate that Avro schemato aPig

schema). To load only the fieds "label” and "value" into Pig, you can manually specify the
schema passed to AvroStorage:

4.8.5 Store Examples

Suppose that you are saving a bag called measurements with the schema:

Page 35

Built In Functions

To store this bag into afile called "measurements’, you can use a statement like:

AvroStorage will trandate thisto the Avro schema

But suppose that you knew that the label and value fields would never be null. Y ou could
define amore precise schema manually using a statement like:

4.9 TrevniStorage

Loads and stores data from Trevni files.

4.9.1 Syntax

Trevni Storage(['schemajrecord name], ['options])

Trevni is acolumn-oriented storage format that is part of the Apache Avro project. Trevni is
closely related to Avro.

Likewise, TrevniStorage is very closely related to AvroStorage, and shares the same
options as AvroStorage. See AvroStorage for a detailed description of the arguments for
TrevniStorage.

4.10 AccumuloStorage

Loads or stores data from an Accumulo table. Thefirst element in a Tuple is equivalent to the
"row" from the Accumulo Key, while the columnsin that row are can be grouped in various
static or wildcarded ways. Basic wildcarding functionality exists to group various columns

Page 36

Built In Functions

families/qualifiersinto aMap for LOADS, or serialize aMap into some group of column

families or qualifiers on STORES.
4.10.1 Syntax

AccumuloStorage(['columns, ‘options]])

4.10.2 Arguments

‘columns

A comma-separated list of "columns' to read data
from to write data to. Each of these columns can be
considered one of three different types:

1. Literal
2. Column family prefix
3. Column qudlifier prefix

Literal: thisisthe simplest specification which isa
colon-delimited string that maps to a column family
and column qualifier. Thiswill read/write asimple
scalar from/to Accumulo.

Column family prefix: When reading data, this

will fetch data from Accumulo Key-Valuesin the
current row whose column family match the given
prefix. Thiswill result in aMap being placed into
the Tuple. When writing data, aMap is also expected
at the given offset in the Tuple whose Keys will be
appended to the column family prefix, an empty
column qualifier is used, and the Map value will

be placed in the Accumulo Vaue. A valid column
family prefix isaliteral asterisk (*) in which case the
Map Key will be equivaent to the Accumulo column
family.

Column qualifier prefix: Similar to the column
family prefix except it operates on the column
qualifier. On reads, Accumulo Key-Valuesin the
same row that match the given column family and
column qualifier prefix will be placed into asingle
Map. On writes, the provided column family from
the column specification will be used, the Map key
will be appended to the column qualifier provided
in the specification, and the Map Vaue will be the
Accumulo Vaue.

When "columns" is not provided or isablank String,
it istreated equivalently to "*". Thisisto say that
when a column specification string is not provided,
for reads, al columnsin the given Accumulo row

Page 37

Built In Functions

will be placed into a single Map (with the Map keys
being colon delimited to preserve the column family/
qualifier from Accumulo). For writes, the Map keys
will be placed into the column family and the column
qualifier will be empty.

‘'options A string that contains space-separated options
("optionA valueA -optionB valueB -optionC
vaueC")

The currently supported options are:

4.10.3 Usage

(-c|--caster) LoadStoreCasterlmpl An
implementation of a LoadStoreCaster to

use when serializing typesinto Accumulo,
usually AccumuloBinaryConverter

or UTF8StringConverter, defaults to
UTF8StorageConverter.
(-auths|--authorizations) authl,auth2...

A comma-separated list of Accumulo
authorizations to use when reading data

from Accumulo. Defaults to the empty set of
authorizations (none).

(-g]--start) start_row The Accumulo row to begin
reading from, inclusive

(-€]--end) end_row The Accumulo row to read
until, inclusive

(-buff|--mutation-buffer-size) num_bytes The
number of bytes to buffer when writing data
to Accumulo. A higher value requires more
memory

(-wt|--write-threads) num_threads The number of
threads used to write datato Accumulo.
(-ml]--max-latency) milliseconds Maximum
time in milliseconds before datais flushed to
Accumulo.

(-sep|--separator) str The separator character
used when parsing the column specification,
defaultsto comma (,)
(-iw[--ignore-whitespace) (truejfalse) Should
whitespace be stripped from the column
specification, defaults to true

AccumuloStorage has the functionality to store or fetch data from Accumulo. Its goal isto
provide asimple, widely applicable table schema compatible with Pig's API. Each Tuple
contains some subset of the columns stored within one row of the Accumulo table, which

Page 38

Built In Functions

depends on the columns provided as an argument to the function. If ' is provided, al
columnsin the table will be returned. The second argument provides control over avariety of
options that can be used to change various properties.

When invoking Pig Scripts that use AccumuloStorage, it's important to ensure that Pig has
the Accumulo jars on its classpath. Thisis easily achieved using the ACCUMULO_HOME
environment variable.

Pl G_CLASSPATH="$ACCUMJULO HOME/ | i b/ *: $PI G_CLASSPATH' pig ny_script.pig

4.10.4 Load Example

Itissimpleto fetch al columns from Airport codes that fall between Boston and San
Francisco that can be viewed with "authl' and/or ‘auth2' Accumulo authorizations.

raw = LOAD ' accunul o://airports?

i nst ance=accunul o&user =r oot &asswor d=passwd&zookeeper s=| ocal host"'
USI NG or g. apache. pi g. backend. hadoop. accunul 0. Accunul oSt or age(
"*''-a authl,auth2 -s BCS -e SFO) AS
(code: chararray, all_colums: map[]);

The datatypes of the columns are declared with the "AS" clause. In this example, the row
key, which isthe unique airport code is assigned to the "code" variable while al of the other
columns are placed into the map. When there is a non-empty column qualifier, the key in
that map will have a colon which separates which portion of the key came from the column
family and which portion came from the column qualifier. The Accumulo valueis placed in
the Map value.

Most times, it is not necessary, nor desired for performance reasons, to fetch all columns.

raw = LOAD ' accunul o://airports?
i nst ance=accunul o&user =r oot &asswor d=passwd&zookeeper s=I| ocal host"'
USI NG or g. apache. pi g. backend. hadoop. accunul 0. Accunmul oSt or age(
' nane, bui | di ng: num termnal s, carrier*, reviews:transportation*') AS
(code: chararray nane: bytearray carrier_map: map[] transportion_revi ews_nmap: map[]);

An asterisk can be used when requesting columns to group a collection of columnsinto a
single Map instead of enumerating each column.

4.10.5 Store Example

Data can be easily stored into Accumulo.

A = LOAD 'flights.txt' AS (id:chararray, carrier_nane:chararray, src_airport:chararray,
dest _airport:chararray, tail_nunber:int);

Page 39

Built In Functions

STORE A | NTO ' accunul o: //flights?
i nst ance=accunul o&user =r oot &passwor d=passwd&zookeeper s=| ocal host' USI NG

or g. apache. pi g. backend. hadoop. accurnul 0. Accurul oSt or age(' carri er_nane, src_ai rport, dest _airport,tail _nunber')

Here, we read the file 'flights.txt' out of HDFS and store the results into the relation A. We
extract aunique ID for the flight, its source and destination and the tail number from the
given file. When STORE'ing back into Accumulo, we specify the column specifications (in
this case, just a column family). It is also important to note that four elements are provided as
columns because the first element in the Tuple is used as the row in Accumulo.

4.11 OrcStorage

Loads from or stores datato Orc file.
4.11.1 Syntax

OrcStorage(['options])

4.11.2 Options

A string that contains space-separated options (‘-optionA valueA -optionB valueB -optionC ’). Current
options are only applicable with STORE operation and not for LOAD.

Currently supported options are:

e --stripeSize or -s Set the stripe size for the file. Default is 268435456(256 MB).

e --rowlndexStride or -r Set the distance between entriesin the row index. Default is 10000.

« --bufferSize or -b Set the size of the memory buffers used for compressing and storing the stripe in
memory. Default is 262144 (256K).

e --blockPadding or -p Sets whether the HDFS blocks are padded to prevent stripes from straddling blocks.
Default istrue.

e --compress or -c Sets the generic compression that is used to compress the data. Valid codecs are:
NONE, ZLIB, SNAPPY, LZO. Default isZLIB.

e --keepSingleFieldTuple or -k Setswhether to keep a Tuple(struct) schemainside a Bag(array) even if the
tuple only contains asingle field. Default is false.

e --version or -v Setsthe version of the file that will be written

4.11.3 Example

OrcStorage as a StorefFunc.

A = LOAD 'student.txt' as (name:chararray, age:int, gpa:double);
store Ainto 'student.orc' using OcStorage('-c SNAPPY'); -- store student.txt into
data.orc with SNAPPY conpressi on

OrcStorage as a L oadFunc.

Page 40

Built In Functions

A = LOAD 'student.orc' USING O cStorage();

describe A, -- See the schema of student.orc

B =filter A by age > 25 and gpa < 3; -- filter condition will be pushed up to | oader
dunp B; -- dunp the content of student.orc

4.11.4 Data types

Most Orc data type has one to one mapping to Pig datatype. Several exceptions are:
Loader side:

* Orc STRING/CHAR/VARCHAR al map to Pig varchar
* Orc BYTE/BINARY all map to Pig bytearray

* Orc TIMESTAMP/DATE al mapsto Pig datetime

* Orc DECIMAL mapsto Pig bigdecimal

Storer side;

» Pig chararray mapsto Orc STRING

» Pig datetime mapsto Orc TIMESTAMP

» Pig bigdecimal/biginteger all map to Orc DECIMAL
* Pig bytearray mapsto Orc BINARY

4.11.5 Predicate pushdown

If thereisafilter statement right after OrcStorage, Pig will push the filter condition to the
loader. OrcStorage will prune file/stripe/row group which does not satisfy the condition
entirely. For the file/stripe/row group contains data that satisfies the filter condition,
OrcStorage will load the file/stripe/row group and Pig will evaluate the filter condition again
to remove additional datawhich does not satisfy the filter condition.

OrcStorage predicate pushdown currently support al primitive data types but none of the
complex datatypes. For example, map condition cannot push into OrcStorage:

A = LOAD 'student.orc' USING O cStorage();
B =filter A by info# age' > 25; -- map condition cannot push to O cStorage
dunp B;

Currently, the following expressionsin filter condition are supported in OrcStorage predicate
pushdown: >, >=, <, <=, ==, =, between, in, and, or, not. The missing expressions are: is
null, is not null, matches.

5 Math Functions

For general information about these functions, see the Java APl Specification, Class Math.
Note the following:

Page 41

http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html

Built In Functions

» Pig function names are case sensitive and UPPER CASE.
» Pig may process results differently than as stated in the Java APl Specification:

» If theresult valueis null or empty, Pig returns null.
* If theresult valueis not anumber (NaN), Pig returns null.
» If Pigisunableto process the expression, Pig returns an exception.

5.1 ABS

Returns the absol ute value of an expression.
5.1.1 Syntax

ABS(expression)

5.1.2 Terms

expression Any expression whose result istypeint, long, float,
or double.

5.1.3 Usage

Use the ABS function to return the absolute value of an expression. If the result is not
negative (x # 0), the result is returned. If the result is negative (x < 0), the negation of the
result is returned.

5.2 ACOS

Returns the arc cosine of an expression.
5.2.1 Syntax
ACOS(expression)
5.2.2 Terms
expression An expression whose result is type double.
5.2.3 Usage
Use the ACOS function to return the arc cosine of an expression.

5.3 ASIN

Returns the arc sine of an expression.

Page 42

Built In Functions

5.3.1 Syntax

ASIN(expression)

5.3.2 Terms
expression An expression whose result is type double.
5.3.3 Usage

Use the ASIN function to return the arc sine of an expression.

5.4 ATAN

Returns the arc tangent of an expression.
5.4.1 Syntax
ATAN(expression)
5.4.2 Terms
expression An expression whose result is type double.
5.4.3 Usage
Use the ATAN function to return the arc tangent of an expression.

5.5 CBRT

Returns the cube root of an expression.
5.5.1 Syntax

CBRT (expression)
5.5.2 Terms

expression An expression whose result is type double.

5.5.3 Usage

Use the CBRT function to return the cube root of an expression.

Page 43

Built In Functions

5.6 CEIL

Returns the value of an expression rounded up to the nearest integer.
5.6.1 Syntax

CEIL (expression)

5.6.2 Terms
expression An expression whose result is type double.
5.6.3 Usage

Use the CEIL function to return the value of an expression rounded up to the nearest integer.
This function never decreases the result value.

X CEIL(x)
4.6 5

35 4

24 3

10 1

-1.0 -1

24 -2

-35 -3

-4.6 -4

5.7 COS

Returns the trigonometric cosine of an expression.

5.7.1 Syntax
COS(expression)
5.7.2 Terms
expression An expression (angle) whose result is type double.

Page 44

Built In Functions

5.7.3 Usage

Use the COS function to return the trigonometric cosine of an expression.

5.8 COSH

Returns the hyperbolic cosine of an expression.
5.8.1 Syntax

COSH(expression)

5.8.2 Terms

expression An expression whose result is type double.
5.8.3 Usage
Use the COSH function to return the hyperbolic cosine of an expression.

5.9 EXP

Returns Euler's number e raised to the power of x.
5.9.1 Syntax
EXP(expression)
5.9.2 Terms
expression An expression whose result is type double.

5.9.3 Usage

Use the EXP function to return the value of Euler's number e raised to the power of x (where
x isthe result value of the expression).

5.10 FLOOR

Returns the value of an expression rounded down to the nearest integer.
5.10.1 Syntax

FLOOR(expression)

Page 45

Built In Functions

5.10.2 Terms
expression An expression whose result is type double.
5.10.3 Usage

Use the FLOOR function to return the value of an expression rounded down to the nearest
integer. This function never increases the result value.

X FLOOR(x)
4.6 4
35 3
2.4 2
1.0 1
-1.0 -1
-2.4 -3
-35 -4
-4.6 -5
511 LOG

Returns the natural logarithm (base €) of an expression.

5.11.1 Syntax

L OG(expression)
5.11.2 Terms

expression An expression whose result is type double.
5.11.3 Usage

Use the LOG function to return the natural logarithm (base €) of an expression.

5.12 LOG10

Returns the base 10 logarithm of an expression.

Page 46

Built In Functions

5.12.1 Syntax

LOG10(expression)
5.12.2 Terms

expression An expression whose result is type double.
5.12.3 Usage

Use the LOG10 function to return the base 10 logarithm of an expression.

5.13 RANDOM

Returns a pseudo random number.
5.13.1 Syntax

RANDOM|()

5.13.2 Terms
N/A No terms.

5.13.3 Usage

Use the RANDOM function to return a pseudo random number (type double) greater than or
egual to 0.0 and less than 1.0.

5.14 ROUND

Returns the value of an expression rounded to an integer.

5.14.1 Syntax

ROUND (expression)
5.14.2 Terms

expression An expression whose result is type float or double.
5.14.3 Usage

Use the ROUND function to return the value of an expression rounded to an integer (if the
result type isfloat) or rounded to along (if the result type is double).

Page 47

Values are rounded towards positive infinity: r ound(x)

X
46
35
2.4
1.0
-1.0
2.4
-35

-4.6

5.15 ROUND_TO

ROUND(X)

5

Built In Functions

= floor(x + 0.5).

Returns the value of an expression rounded to a fixed number of decimal digits.

5.15.1 Syntax

ROUND_TO(val, digits[, mode])

5.15.2 Terms

val

digits

mode

5.15.3 Usage

An expression whose result is type float or double:
the value to round.

An expression whose result is type int: the number of
digitsto preserve.

An optiona int specifying the rounding mode,
according to the constants Java provides.

Use the ROUND function to return the value of an expression rounded to a fixed number of
digits. Given afloat, its result is afloat; given adoubleitsresult is adouble.

Theresult isamultiple of thedi gi t s-th power of ten: O leads to no fractional digits; a
negative value zeros out correspondingly many places to the left of the decimal point.

Page 48

https://en.wikipedia.org/wiki/Rounding#Tie-breaking
http://docs.oracle.com/javase/7/docs/api/constant-values.html#java.math

Built In Functions

When node isomitted or has the value 6 (Roundi ngivbde. HALF_EVEN), theresult is
rounded towards the nearest neighbor, and ties are rounded to the nearest even digit. This
mode minimizes cumulative error and tends to preserve the average of a set of values.

When node hasthe value 4 (Roundi nghMbde. HALF_UP), the result is rounded towards
the nearest neighbor, and ties are rounded away from zero. This mode matches the behavior
of most SQL systems.

For other rounding modes, consult Java's documentation. There is no rounding mode that
matches Mat h. r ound's behavior (i.e. round towards positive infinity) -- blame Java, not
Pig.

1234.1789 8 1234.1789
1234.1789 4 1234.1789
1234.1789 1 1234.2
1234.1789 0 1234.0
1234.1789 -1 1230.0
1234.1789 -3 1000.0
1234.1789 -4 0.0
3.25000001 1 3.3

3.25 1 3.2

-3.25 1 -3.2

3.15 1 3.2

-3.15 1 -3.2

3.25 1 4 33

-3.25 1 4 -3.3

35 0 4.0

-35 0 -4.0

2.5 0 20

-2.5 0 -2.0

35 0 4 4.0

Page 49

http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html#HALF_EVEN
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html#HALF_UP
https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero
http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html

Built In Functions

-35 0 4 -4.0

25 0 4 3.0

-2.5 0 4 -3.0
5.16 SIN

Returns the sine of an expression.
5.16.1 Syntax

SIN(expression)

5.16.2 Terms
expression An expression whose result is double.
5.16.3 Usage

Use the SIN function to return the sine of an expession.

5.17 SINH

Returns the hyperbolic sine of an expression.
5.17.1 Syntax

SINH(expression)

5.17.2 Terms
expression An expression whose result is double.
5.17.3 Usage

Use the SINH function to return the hyperbolic sine of an expression.

5.18 SQRT

Returns the positive square root of an expression.

Page 50

Built In Functions

5.18.1 Syntax

SQRT (expression)
5.18.2 Terms

expression An expression whose result is double.
5.18.3 Usage

Use the SQRT function to return the positive square root of an expression.

5.19 TAN

Returns the trignometric tangent of an angle.

5.19.1 Syntax

TAN(expression)
5.19.2 Terms

expression An expression (angle) whose result is double.
5.19.3 Usage

Use the TAN function to return the trignometric tangent of an angle.

5.20 TANH

Returns the hyperbolic tangent of an expression.

5.20.1 Syntax

TANH(expression)
5.20.2 Terms

expression An expression whose result is double.
5.20.3 Usage

Use the TANH function to return the hyperbolic tangent of an expression.

Page 51

Built In Functions

6 String Functions

For general information about these functions, see the Java API Specification, Class String.
Note the following:

* Pig function names are case sensitive and UPPER CASE.

* Pig string functions have an extra, first parameter: the string to which all the operations
are applied.

» Pig may process results differently than as stated in the Java APl Specification. If any
of the input parameters are null or if an insufficient number of parameters are supplied,
NULL isreturned.

6.1 ENDSWITH

Tests inputs to determine if the first argument ends with the string in the second.
6.1.1 Syntax

ENDSWITH(string, testAgainst)

6.1.2 Terms
string The string to be tested.
testAgainst The string to test against.
6.1.3 Usage

Use the ENDSWITH function to determine if the first argument ends with the string in the
second.

For example, ENDSWITH (‘foobar', 'foo") will false, whereas ENDSWITH (‘foobar', 'bar’)
will return true.

6.2 EqualsignoreCase

Compares two Strings ignoring case considerations.
6.2.1 Syntax

EqualsignoreCase(stringl, string2)
6.2.2 Terms

stringl The source string.

Page 52

http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

Built In Functions

string2 The string to compare against.

6.2.3 Usage

Use the EqualsignoreCase function to determine if two string are equal ignoring case.

6.3 INDEXOF

Returns the index of the first occurrence of a character in a string, searching forward from a
start index.

6.3.1 Syntax

INDEXOF(string, ‘character’, startlndex)

6.3.2 Terms
string The string to be searched.
‘character' The character being searched for, in quotes.
startindex The index from which to begin the forward search.
The string index begins with zero (0).
6.3.3 Usage

Use the INDEXOF function to determine the index of the first occurrence of a character in a
string. The forward search for the character begins at the designated start index.

6.4 LAST_INDEX_OF

Returns the index of the last occurrence of a character in a string, searching backward from
the end of the string.

6.4.1 Syntax

LAST_INDEX_OF(string, 'character’)

6.4.2 Terms
string The string to be searched.
‘character' The character being searched for, in quotes.

Page 53

Built In Functions

6.4.3 Usage

Usethe LAST_INDEX_OF function to determine the index of the last occurrence of a
character in a string. The backward search for the character begins at the end of the string.

6.5 LCFIRST

Converts the first character in astring to lower case.
6.5.1 Syntax

L CFIRST (expression)

6.5.2 Terms
expression An expression whose result type is chararray.
6.5.3 Usage

Use the LCFIRST function to convert only the first character in a string to lower case.

6.6 LOWER

Converts all charactersin astring to lower case.
6.6.1 Syntax
L OWER(expression)
6.6.2 Terms
expression An expression whose result type is chararray.
6.6.3 Usage
Use the LOWER function to convert al charactersin a string to lower case.

6.7 LTRIM

Returns a copy of a string with only leading white space removed.
6.7.1 Syntax

LTRIM(expression)

Page 54

Built In Functions

6.7.2 Terms
expression An expression whose result is chararray.
6.7.3 Usage

Usethe LTRIM function to remove leading white space from a string.

6.8 REGEX_EXTRACT

Performs regular expression matching and extracts the matched group defined by an index
parameter.

6.8.1 Syntax

REGEX_EXTRACT (string, regex, index)

6.8.2 Terms
string The string in which to perform the match.
regex Theregular expression.
index The index of the matched group to return.
6.8.3 Usage

Use the REGEX_EXTRACT function to perform regular expression matching and to extract
the matched group defined by the index parameter (where the index is a 1-based parameter.)
The function uses Java regular expression form.

The function returns a string that corresponds to the matched group in the position specified
by the index. If there is no matched expression at that position, NULL isreturned.

6.8.4 Example
This example will return the string '192.168.1.5'.

REGEX_EXTRACT(' 192. 168. 1. 5: 8020", ' (.*):(.*)', 1);

6.9 REGEX_EXTRACT_ALL

Performs regular expression matching and extracts all matched groups.

Page 55

Built In Functions

6.9.1 Syntax

REGEX_EXTRACT_ALL (string, regex)

6.9.2 Terms
string The string in which to perform the match.
regex The regular expression.

6.9.3 Usage

Use the REGEX_EXTRACT_ALL function to perform regular expression matching and to
extract all matched groups. The function uses Javaregular expression form.

The function returns a tuple where each field represents a matched expression. If thereisno
match, an empty tuple is returned.

6.9.4 Example
This example will return the tuple (192.168.1.5,8020).

REGEX_EXTRACT ALL(' 192. 168. 1.5:8020", ' (.*)\:(.*)");

6.10 REGEX_SEARCH
Performs regular expression matching and searches all matched charactersin a string.
6.10.1 Syntax

REGEX_SEARCH(string, 'regExp";

6.10.2 Terms
string The string in which to perform the match.
'regExp' The regular expression to which the string isto be
matched, in quotes.
6.10.3 Usage

Use the REGEX_SEARCH function to perform regular expression matching and to find all
matched charactersin astring.

The function returns tuples which are placed in a bag. Each tuple only contains one field
which represents a matched expression.

Page 56

Built In Functions

6.10.4 Example
Thisis example will return the bag { (=04),(=06),(=96)} .

RECGEX_SEARCH(' a=04 b=06 c¢=96 or nore', '(=\\d+\\s)');

And thisis example will return the bag { (04),(06),(96)} .
REGEX_SEARCH(' a=04 b=06 c=96 or nore', '=(\\d+)\\s');

6.11 REPLACE
Replaces existing charactersin a string with new characters.
6.11.1 Syntax

REPLACE(string, 'regExp', 'newChar");

6.11.2 Terms
string The string to be updated.
'regExp’ The regular expression to which the string isto be
matched, in quotes.
'newChar’ The new characters replacing the existing characters,
in quotes.
6.11.3 Usage

Use the REPLACE function to replace existing characters in a string with new characters.

For example, to change "open source software” to "open source wiki" use this statement:
REPL A CE(string,'software','wiki')

Note that the REPLACE function isinternally implemented using
java.string.replaceAll(String regex, String replacement) where 'regExp’ and 'newChar' are
passed as the 1st and 2nd argument respectively. If you want to replace special characters
such as [in the string literal, it is necessary to escape them in 'regexp’ by prefixing them
with double backslashes (e.g. \\[").

6.12 RTRIM

Returns a copy of a string with only trailing white space removed.

Page 57

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#replaceAll(java.lang.String, java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#replaceAll(java.lang.String, java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#bs

Built In Functions

6.12.1 Syntax

RTRIM (expression)

6.12.2 Terms
expression An expression whose result is chararray.
6.12.3 Usage

Use the RTRIM function to remove trailing white space from a string.

6.13 SPRINTF

Formats a set of values according to a printf-style template, using the native Java Formatter
library.

6.13.1 Syntax

SPRINTF(format, [...vals])

6.13.2 Terms
format The printf-style string describing the template.
vals The values to place in the template. There must be a
tuple element for each formatting placeholder, and it
must have the correct type: i nt or | ong for integer
formatssuch as%d; f | oat or doubl e for decimal
formats such as % ; and | ong for date/time formats
such as % .
6.13.3 Usage

Use the SPRINTF function to format a string according to a template. For example,
SPRINTF("part-%05d", 69) will return 'part-00069'.

' UBs| v8d| 1234567 1234567 'yay' ' 1234567| Format strings
% 8s' 1234567| yay with %s,
' integers with
%d. Types
are converted
for you where
reasonable

Page 58

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

(null value)

' U8s| ¥8d|
% 8s'

' 98. 3f | %X

' % +10d]|
9% 06d'

1234567

1234567

123. 14159

1234567

1234567

(null value)

665568

-123

yay

yay

(null value)

(null value)

' 123.142]
a27e0’

' +1, 234, 567
(0123)"

Built In Functions

(here, int ->
string).

Returns null
(no error or
warning) with
anull format
string.

Returns null

(no error or
warning) if any
single argument
isnull.

Format floats/
doubles

with %f,
hexadecimal
integers with
%x (there are
others besides
-- seethe Java
docs)

Numerics

take a prefix
modifier: , for
locale-specific
thousands-
delimiting, O for
zero-padding;

+ to always
show aplus
sign for positive
numbers; space
toalow a
space preceding
positive
numbers; (
toindicate
negative
numbers with
parentheses

Page 59

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

Built In Functions

(accountant-
style).

' U2%5d: "t he' 48879 " wher es' ' 48879: Refer to args

¥8%$6s wher es positionally

% $3s WRP4Ax t he beef and as many

(9%<4X)’ (BEEF) ' times as you

likeusing

% pos)$. ...
Use . . .

to refer to the
previously-
specified arg.

" Launch ToM | i Secon ToStri ng(Cur " Launch Instead use

Time: %4d "yyyy- MM Ti me: ToString to

%' dd HH nm ss 140016413200 format the date/

Z) 2014- 05-15 timeportions
09: 28: 52 and SPRINTF
- 0500’ to layout the
results.

' U8s| % 8s' 1234567 M ssi ngFor ma Y ou must apti on:
For mat supply
specifier arguments for
"% 8s' all specifiers

' UBs' 1234567 "ignored "al so' 1234567 It'sOK to

supply too
many, though

Note: although the Java formatter (and thus this function) offersthe % specifier for date/
time elements, it's best avoided: it's cumbersome, the output and timezone handling may
differ from what you expect, and it doesn't accept datetime objects from pig. Instead, just
prepare dates usint the ToSring UDF as shown.

6.14 STARTSWITH

Tests inputs to determine if the first argument starts with the string in the second.
6.14.1 Syntax

STARTSWITH(string, testAgainst)

Page 60

Built In Functions

6.14.2 Terms
string The string to be tested.
testAgainst The string to test against.
6.14.3 Usage

Use the STARTSWITH function to determine if the first argument starts with the string in
the second.

For example, STARTSWITH (‘foobar', 'foo") will true, whereas STARTSWITH (‘foobar’,
'bar’) will return false.

6.15 STRSPLIT

Splits astring around matches of a given regular expression.
6.15.1 Syntax

STRSPLIT(string, regex, limit)

6.15.2 Terms

string The string to be split.
regex The regular expression.

limit If the value is positive, the pattern (the compiled
representation of the regular expression) is applied
at most limit-1 times, therefore the value of the
argument means the maximum length of the result
tuple. The last element of the result tuple will contain
all input after the last match.

If the value is negative, no limit is applied for the
length of the result tuple.

If the valueis zero, no limit is applied for the length
of the result tuple too, and trailing empty strings (if
any) will be removed.

6.15.3 Usage

Use the STRSPLIT function to split a string around matches of a given regular expression.

For example, given the string (open:source:software), STRSPLIT (string, :',2) will return
((open,source:software)) and STRSPLIT (string, ":',3) will return ((open,source,software)).

Page 61

Built In Functions

6.16 STRSPLITTOBAG
Splits a string around matches of a given regular expression and returns a databag
6.16.1 Syntax

STRSPLITTOBAG(string, regex, limit)

6.16.2 Terms

string The string to be split.
regex Theregular expression.

limit If the value is positive, the pattern (the compiled
representation of the regular expression) is applied
at most limit-1 times, therefore the value of the
argument means the maximum size of the result bag.
The last tuple of the result bag will contain all input
after the last match.

If the value is negative, no limit is applied to the size
of the result bag.

If the valueis zero, no limit is applied to the size of
the result bag too, and trailing empty strings (if any)
will be removed.

6.16.3 Usage

Usethe STRSPLITTOBAG function to split a string around matches of a given regular
expression.

For example, given the string (open:source:software), STRSPLITTOBAG (string, ":',2) will
return { (open),(source:software)} and STRSPLITTOBAG (string, :',3) will return { (open),
(source),(software)} .

6.17 SUBSTRING

Returns a substring from a given string.
6.17.1 Syntax

SUBSTRING(string, startindex, stoplndex)
6.17.2 Terms

string The string from which a substring will be extracted.

Page 62

Built In Functions

startl ndex Theindex (typeinteger) of the first character of the
substring.

The index of astring begins with zero (0).

stoplndex Theindex (typeinteger) of the character following
the last character of the substring.

6.17.3 Usage

Use the SUBSTRING function to return a substring from a given string.

Given afield named a pha whose value is ABCDEF, to return substring BCD use this
statement: SUBSTRING(alpha,1,4). Note that 1 isthe index of B (the first character of the
substring) and 4 isthe index of E (the character following the last character of the substring).

6.18 TRIM

Returns a copy of astring with leading and trailing white space removed.
6.18.1 Syntax

TRIM (expression)

6.18.2 Terms
expression An expression whose result is chararray.
6.18.3 Usage

Use the TRIM function to remove leading and trailing white space from a string.

6.19 UCFIRST

Returns a string with the first character converted to upper case.
6.19.1 Syntax

UCFIRST (expression)

6.19.2 Terms
expression An expression whose result typeis chararray.
6.19.3 Usage

Use the UCFIRST function to convert only the first character in a string to upper case.

Page 63

Built In Functions

6.20 UPPER

Returns a string converted to upper case.

6.20.1 Syntax

UPPER(expression)
6.20.2 Terms

expression An expression whose result typeis chararray.
6.20.3 Usage

Use the UPPER function to convert all charactersin a string to upper case.

6.21 UniquelD

Returns auniqueid string for each record in the alias.

6.21.1 Usage

Uniquel D generates a unique id for each records. The id takes form "taskindex-sequence”

7 Datetime Functions

For general information about datetime type operations, see the Java APl Specification, Java
Date class, and JODA DateTime class. And for the information of 1SO date and time formats,
please refer to Date and Time Formats.

7.1 AddDuration

Returns the result of a DateTime object plus a Duration object.

7.1.1 Syntax

AddDuration(datetime, duration)

7.1.2 Terms
datetime A datetime object.
duration The duration string in SO 8601 format.

Page 64

http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html
http://joda-time.sourceforge.net/apidocs/index.html
http://www.w3.org/TR/NOTE-datetime
http://en.wikipedia.org/wiki/ISO_8601#Durations
http://en.wikipedia.org/wiki/ISO_8601#Durations

Built In Functions

7.1.3 Usage

Use the AddDuration function to created a new datetime object by add some duration to a
given datetime object.

7.2 CurrentTime

Returns the DateTime object of the current time.
7.2.1 Syntax
CurrentTime()

7.2.2 Usage

Use the CurrentTime function to generate a datetime object of current timestamp with
millisecond accuracy.

7.3 DaysBetween
Returns the number of days between two DateTime objects.

7.3.1 Syntax

DaysBetween(datetimel, datetime?)

7.3.2 Terms
datetimel A datetime object.
datetime2 Another datetime object.
7.3.3 Usage

Use the DaysBetween function to get the number of days between the two given datetime
objects.

7.4 GetDay

Returns the day of a month from a DateTime object.
7.4.1 Syntax

GetDay(datetime)

Page 65

Built In Functions

7.4.2 Terms
datetime A datetime object.
7.4.3 Usage
Use the GetDay function to extract the day of a month from the given datetime object.

7.5 GetHour

Returns the hour of a day from a DateTime object.
7.5.1 Syntax

GetHour(datetime)

7.5.2 Terms
datetime A datetime object.
7.5.3 Usage
Use the GetHour function to extract the hour of a day from the given datetime object.

7.6 GetMilliSecond

Returns the millisecond of a second from a DateTime object.
7.6.1 Syntax

GetMilliSecond(datetime)

7.6.2 Terms
datetime A datetime object.

7.6.3 Usage

Use the GetMilliSecond function to extract the millsecond of a second from the given
datetime object.

7.7 GetMinute

Returns the minute of a hour from a DateTime object.

Page 66

Built In Functions

7.7.1 Syntax

GetMinute(datetime)

7.7.2 Terms
datetime A datetime object.
7.7.3 Usage
Use the GetMinute function to extract the minute of a hour from the given datetime object.

7.8 GetMonth

Returns the month of ayear from a DateTime object.
7.8.1 Syntax

GetM onth(datetime)

7.8.2 Terms
datetime A datetime object.
7.8.3 Usage
Use the GetMonth function to extract the month of ayear from the given datetime object.

7.9 GetSecond

Returns the second of a minute from a DateTime object.
7.9.1 Syntax

GetSecond(datetime)

7.9.2 Terms

datetime A datetime object.

7.9.3 Usage

Use the GetSecond function to extract the second of a minute from the given datetime object.

Page 67

Built In Functions

7.10 GetWeek
Returns the week of aweek year from a DateTime object.

7.10.1 Syntax

GetWeek(datetime)

7.10.2 Terms
datetime A datetime object.

7.10.3 Usage

Use the GetWeek function to extract the week of aweek year from the given datetime object.
Note that week year may be different from year.

7.11 GetWeekYear

Returns the week year from a DateTime object.
7.11.1 Syntax

GetWeekY ear(datetime)

7.11.2 Terms
datetime A datetime object.

7.11.3 Usage

Use the GetWeekY ear function to extract the week year from the given datetime object. Note
that week year may be different from year.

7.12 GetYear

Returns the year from a DateTime object.
7.12.1 Syntax

GetY ear(datetime)

7.12.2 Terms

datetime A datetime object.

Page 68

Built In Functions

7.12.3 Usage

Use the GetY ear function to extract the year from the given datetime object.

7.13 HoursBetween

Returns the number of hours between two DateTime objects.
7.13.1 Syntax

HoursBetween(datetimel, datetime2)

7.13.2 Terms
datetimel A datetime object.
datetime2 Another datetime object.
7.13.3 Usage

Use the HoursBetween function to get the number of hours between the two given datetime
objects.

7.14 MilliSecondsBetween

Returns the number of milliseconds between two DateTime objects.
7.14.1 Syntax

Milli SecondsBetween(datetimel, datetime?)

7.14.2 Terms
datetimel A datetime object.
datetime2 Another datetime object.
7.14.3 Usage

Use the MilliSecondsBetween function to get the number of millseconds between the two
given datetime objects.

7.15 MinutesBetween

Returns the number of minutes between two DateTime objects.

Page 69

Built In Functions

7.15.1 Syntax

MinutesBetween(datetimel, datetime2)

7.15.2 Terms
datetimel A datetime object.
datetime2 Another datetime object.
7.15.3 Usage

Use the MinutsBetween function to get the number of minutes between the two given
datetime objects.

7.16 MonthsBetween

Returns the number of months between two DateTime objects.
7.16.1 Syntax

MonthsBetween(datetimel, datetime2)

7.16.2 Terms
datetimel A datetime object.
datetime2 Another datetime object.
7.16.3 Usage

Use the MonthsBetween function to get the number of months between the two given
datetime objects.

7.17 SecondsBetween

Returns the number of seconds between two DateTime objects.
7.17.1 Syntax

SecondsBetween(datetimel, datetime2)

7.17.2 Terms

datetimel A datetime object.

Page 70

Built In Functions

datetime2 Another datetime object.

7.17.3 Usage

Use the SecondsBetween function to get the number of seconds between the two given
datetime objects.

7.18 SubtractDuration

Returns the result of a DateTime object minus a Duration object.

7.18.1 Syntax

SubtractDuration(datetime, duration)

7.18.2 Terms

datetime A datetime object.

duration The duration string in 1SO 8601 format.
7.18.3 Usage

Use the AddDuration function to created a new datetime object by add some duration to a
given datetime object.

7.19 ToDate

Returns a DateTime object according to parameters.
7.19.1 Syntax

ToDate(milliseconds)
ToDate(iosstring)

ToDate(userstring, format)
ToDate(userstring, format, timezone)

7.19.2 Terms
millseconds The offset from 1970-01-01T00:00:00.000Z in
terms of the number milliseconds (either positive or
negative).
isostring The datetime string in the 1SO 8601 format.

Page 71

http://en.wikipedia.org/wiki/ISO_8601#Durations
http://en.wikipedia.org/wiki/ISO_8601#Durations
http://www.w3.org/TR/NOTE-datetime

Built In Functions

userstring The datetime string in the user defined format.

format The date time format pattern string (see Java
SimpleDateFormat class).

timezone The timezone string. Either the UTC offset and the

location based format can be used as a parameter,
while internally the timezone will be converted to the
UTC offset format.

Please see the Joda-Time doc for available timezone
IDs.

7.19.3 Usage

Use the ToDate function to generate a DateTime object. Note that if the timezone is not
specified with the | SO datetime string or by the timezone parameter, the default timezone
will be used.

7.20 ToMilliSeconds

Returns the number of milliseconds elapsed since January 1, 1970, 00:00:00.000 GMT for a
DateTime object.

7.20.1 Syntax

ToMuilli Seconds(datetime)

7.20.2 Terms
datetime A datetime object.

7.20.3 Usage

Use the ToMilliSeconds function to convert the DateTime to the number of milliseconds that
have passed since January 1, 1970 00:00:00.000 GMT.

7.21 ToString
ToString converts the DateTime object to the | SO or the customized string.

7.21.1 Syntax

ToString(datetime [, format string])

Page 72

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://joda-time.sourceforge.net/timezones.html

Built In Functions

7.21.2 Terms
datetime A datetime object.
format string The date time format pattern string (see Java
SimpleDateFormat class).
7.21.3 Usage

Use the ToString function to convert the DateTime to the customized string.

7.22 ToUnixTime

Returns the Unix Time aslong for a DateTime object. UnixTime is the number of seconds
elapsed since January 1, 1970, 00:00:00.000 GMT.

7.22.1 Syntax

ToUnixTime(datetime)

7.22.2 Terms
datetime A datetime object.
7.22.3 Usage
Use the ToUnixTime function to convert the DateTime to Unix Time.

7.23 WeeksBetween

Returns the number of weeks between two DateTime objects.
7.23.1 Syntax

WeeksBetween(datetimel, datetime?)

7.23.2 Terms
datetimel A datetime object.
datetime2 Another datetime object.
7.23.3 Usage

Use the WeeksBetween function to get the number of weeks between the two given datetime
objects.

Page 73

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Built In Functions

7.24 YearsBetween

Returns the number of years between two DateTime objects.
7.24.1 Syntax

Y earsBetween(datetimel, datetime?)

7.24.2 Terms
datetimel A datetime object.
datetime2 Another datetime object.
7.24.3 Usage

Use the Y earsBetween function to get the number of years between the two given datetime
objects.

8 Tuple, Bag, Map Functions

8.1 TOTUPLE

Converts one or more expressions to type tuple.
8.1.1 Syntax

TOTUPLE(expression [, expression ...])

8.1.2 Terms
expression An expression of any datatype.
8.1.3 Usage

Use the TOTUPLE function to convert one or more expressions to atuple.
See also: Tuple data type and Type Construction Operators

8.1.4 Example

In this example, fieldsf1, f2 and f3 are converted to atuple.
a = LOAD 'student' AS (fl:chararray, f2:int, f3:float);
DUMP a;

(John, 18, 4. 0)

Page 74

basic.html#tuple
basic.html#type-construction

Built In Functions

8.2 TOBAG

Converts one or more expressions to type bag.

8.2.1 Syntax

TOBAG(expression [, expression ...])

8.2.2 Terms
expression An expression with any data type.
8.2.3 Usage

Use the TOBAG function to convert one or more expressions to individual tuples which are
then placed in abag.

See also: Bag data type and Type Construction Operators

8.2.4 Example
In this example, fieldsf1 and f3 are converted to tuples that are then placed in a bag.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 75

basic.html#bag
basic.html#type-construction

Built In Functions

8.3 TOMAP

Converts key/value expression pairs into a map.

8.3.1 Syntax
TOMAP(key-expression, value-expression [, key-expression, value-expression ...])
8.3.2 Terms
key-expression An expression of type chararray.
value-expression An expression of any type supported by a map.
8.3.3 Usage

Use the TOMAP function to convert pairs of expressions into a map. Note the following:

* You must supply an even number of expressions as parameters
* The elements must comply with map type rules:
» Every odd element (key-expression) must be a chararray since only chararrays can be
keys into the map
» Every even element (value-expression) can be of any type supported by a map.

See also: Map data type and Type Construction Operators

8.3.4 Example

In this example, student names (type chararray) and student GPAS (type float) are used to
create three maps.

8.4 TOP
Returns the top-n tuples from a bag of tuples.

Page 76

basic.html#map
basic.html#type-construction

Built In Functions

8.4.1 Syntax
TOP(topN,column,relation)
8.4.2 Terms
topN The number of top tuples to return (type integer).
column The tuple column whose values are being compared,
note O denotes the first column.
relation The relation (bag of tuples) containing the tuple
column.
8.4.3 Usage

TOP function returns a bag containing top N tuples from the input bag where N is controlled
by the first parameter to the function. The tuple comparison is performed based on asingle
column from the tuple. The column position is determined by the second parameter to the
function. The function assumes that all tuplesin the bag contain an element of the same type

in the compared column.

By default, TOP function uses descending order. But it can be configured via DEFINE

statement.

8.4.4 Example

In this example the top 10 occurrences are returned.

Page 77

Built In Functions

9 Hive UDF

Pig invokes all types of Hive UDF, including UDF, GenericUDF, UDAF, GenericUDAF
and GenericUDTF. Depending on the Hive UDF you want to use, you heed to declare it
in Pig with HiveUDF(handles UDF and GenericUDF), HiveUDAF(handles UDAF and
GenericUDAF), HiveUDTF(handles GenericUDTF).

9.1 Syntax
HiveUDF, HiveUDAF, HiveUDTF share the same syntax.

HiveUDF(name], constant parameters])

9.2 Terms

name Hive UDF name. This can be afully qualified class
name of the Hive UDF/UDTFUDAF class, or a
registered short name in Hive FunctionRegistry (most
Hive builtin UDF does that)

constant parameters Optional tuple representing constant parameters of
aHive UDF/UDTFUDAF. If Hive UDF requires
aconstant parameter, there is no other way Pig can
pass that information to Hive, since Pig schema does
not carry the information whether a parameter is
constant or not. Null item in the tuple means this field
is not a constant. Non-null item represents a constant
field. Datatype for theitem is determined by Pig
contant parser.

9.3 Example
HiveUDF

HiveUDTF

Page 78

Built In Functions

HiveUDAF

HiveUDAF with constant parameter

In this example, we pass (null, "names.txt") to the construct of UDF in_file, meaning the
first parameter is regular, the second parameter is a constant. names.txt can be double
quoted (unlike other Pig syntax), or quoted in \'. Note we need to pass 'names.txt' againin
line 3. Thislooks stupid but we need to do thisto fill the semantic gap between Pig and
Hive. We need to pass the constant in the data pipelinein line 3, which is similar Pig UDF.
Initialization code in Hive UDF takes Objectlnspector, which capture the data type and
whether or not the parameter is a constant. However, initialization code in Pig takes schema,
which only capture the former. We need to use additional mechanism (construct parameter)
to convey the later.

Note: A few Hive 0.14 UDF contains bug which affects Pig and are fixed in Hive 1.0. Hereis
alist: compute_stats, context_ngrams, count, ewah_bitmap, histogram_numeric, collect_list,
collect_set, ngrams, case, in, named_struct, stack, percentile_approx.

Page 79

	Table of contents
	1 Introduction
	2 Dynamic Invokers
	3 Eval Functions
	3.1 AVG
	3.1.1 Syntax
	3.1.2 Terms
	3.1.3 Usage
	3.1.4 Example
	3.1.5 Types Tables

	3.2 BagToString
	3.2.1 Syntax
	3.2.2 Terms
	3.2.3 Usage
	3.2.4 Examples

	3.3 BagToTuple
	3.3.1 Syntax
	3.3.2 Terms
	3.3.3 Usage
	3.3.4 Examples

	3.4 Bloom
	3.4.1 Syntax
	3.4.2 Terms
	3.4.3 Usage
	3.4.4 Examples

	3.5 CONCAT
	3.5.1 Syntax
	3.5.2 Terms
	3.5.3 Usage
	3.5.4 Example

	3.6 COUNT
	3.6.1 Syntax
	3.6.2 Terms
	3.6.3 Usage
	3.6.4 Example
	3.6.5 Types Tables

	3.7 COUNT_STAR
	3.7.1 Syntax
	3.7.2 Terms
	3.7.3 Usage
	3.7.4 Example

	3.8 DIFF
	3.8.1 Syntax
	3.8.2 Terms
	3.8.3 Usage
	3.8.4 Example

	3.9 IsEmpty
	3.9.1 Syntax
	3.9.2 Terms
	3.9.3 Usage
	3.9.4 Example

	3.10 MAX
	3.10.1 Syntax
	3.10.2 Terms
	3.10.3 Usage
	3.10.4 Example
	3.10.5 Types Tables

	3.11 MIN
	3.11.1 Syntax
	3.11.2 Terms
	3.11.3 Usage
	3.11.4 Example
	3.11.5 Types Tables

	3.12 PluckTuple
	3.12.1 Syntax
	3.12.2 Terms
	3.12.3 Usage

	3.13 SIZE
	3.13.1 Syntax
	3.13.2 Terms
	3.13.3 Usage
	3.13.4 Example
	3.13.5 Types Tables

	3.14 SUBTRACT
	3.14.1 Syntax
	3.14.2 Terms
	3.14.3 Usage
	3.14.4 Example

	3.15 SUM
	3.15.1 Syntax
	3.15.2 Terms
	3.15.3 Usage
	3.15.4 Example
	3.15.5 Types Tables

	3.16 IN
	3.16.1 Syntax
	3.16.2 Terms
	3.16.3 Usage
	3.16.4 Example

	3.17 TOKENIZE
	3.17.1 Syntax
	3.17.2 Terms
	3.17.3 Usage
	3.17.4 Example

	4 Load/Store Functions
	4.1 Handling Compression
	4.2 BinStorage
	4.2.1 Syntax
	4.2.2 Terms
	4.2.3 Usage
	4.2.4 Examples

	4.3 JsonLoader, JsonStorage
	4.3.1 Syntax
	4.3.2 Terms
	4.3.3 Usage
	4.3.4 Examples

	4.4 PigDump
	4.4.1 Syntax
	4.4.2 Terms
	4.4.3 Usage
	4.4.4 Example

	4.5 PigStorage
	4.5.1 Syntax
	4.5.2 Terms
	4.5.3 Usage
	4.5.4 Examples

	4.6 TextLoader
	4.6.1 Syntax
	4.6.2 Terms
	4.6.3 Usage
	4.6.4 Example

	4.7 HBaseStorage
	4.7.1 Syntax
	4.7.2 Terms
	4.7.3 Usage
	4.7.4 Load Example
	4.7.5 Store Example

	4.8 AvroStorage
	4.8.1 Syntax
	4.8.2 Terms
	4.8.3 Usage
	4.8.4 Load Examples
	4.8.5 Store Examples

	4.9 TrevniStorage
	4.9.1 Syntax

	4.10 AccumuloStorage
	4.10.1 Syntax
	4.10.2 Arguments
	4.10.3 Usage
	4.10.4 Load Example
	4.10.5 Store Example

	4.11 OrcStorage
	4.11.1 Syntax
	4.11.2 Options
	4.11.3 Example
	4.11.4 Data types
	4.11.5 Predicate pushdown

	5 Math Functions
	5.1 ABS
	5.1.1 Syntax
	5.1.2 Terms
	5.1.3 Usage

	5.2 ACOS
	5.2.1 Syntax
	5.2.2 Terms
	5.2.3 Usage

	5.3 ASIN
	5.3.1 Syntax
	5.3.2 Terms
	5.3.3 Usage

	5.4 ATAN
	5.4.1 Syntax
	5.4.2 Terms
	5.4.3 Usage

	5.5 CBRT
	5.5.1 Syntax
	5.5.2 Terms
	5.5.3 Usage

	5.6 CEIL
	5.6.1 Syntax
	5.6.2 Terms
	5.6.3 Usage

	5.7 COS
	5.7.1 Syntax
	5.7.2 Terms
	5.7.3 Usage

	5.8 COSH
	5.8.1 Syntax
	5.8.2 Terms
	5.8.3 Usage

	5.9 EXP
	5.9.1 Syntax
	5.9.2 Terms
	5.9.3 Usage

	5.10 FLOOR
	5.10.1 Syntax
	5.10.2 Terms
	5.10.3 Usage

	5.11 LOG
	5.11.1 Syntax
	5.11.2 Terms
	5.11.3 Usage

	5.12 LOG10
	5.12.1 Syntax
	5.12.2 Terms
	5.12.3 Usage

	5.13 RANDOM
	5.13.1 Syntax
	5.13.2 Terms
	5.13.3 Usage

	5.14 ROUND
	5.14.1 Syntax
	5.14.2 Terms
	5.14.3 Usage

	5.15 ROUND_TO
	5.15.1 Syntax
	5.15.2 Terms
	5.15.3 Usage

	5.16 SIN
	5.16.1 Syntax
	5.16.2 Terms
	5.16.3 Usage

	5.17 SINH
	5.17.1 Syntax
	5.17.2 Terms
	5.17.3 Usage

	5.18 SQRT
	5.18.1 Syntax
	5.18.2 Terms
	5.18.3 Usage

	5.19 TAN
	5.19.1 Syntax
	5.19.2 Terms
	5.19.3 Usage

	5.20 TANH
	5.20.1 Syntax
	5.20.2 Terms
	5.20.3 Usage

	6 String Functions
	6.1 ENDSWITH
	6.1.1 Syntax
	6.1.2 Terms
	6.1.3 Usage

	6.2 EqualsIgnoreCase
	6.2.1 Syntax
	6.2.2 Terms
	6.2.3 Usage

	6.3 INDEXOF
	6.3.1 Syntax
	6.3.2 Terms
	6.3.3 Usage

	6.4 LAST_INDEX_OF
	6.4.1 Syntax
	6.4.2 Terms
	6.4.3 Usage

	6.5 LCFIRST
	6.5.1 Syntax
	6.5.2 Terms
	6.5.3 Usage

	6.6 LOWER
	6.6.1 Syntax
	6.6.2 Terms
	6.6.3 Usage

	6.7 LTRIM
	6.7.1 Syntax
	6.7.2 Terms
	6.7.3 Usage

	6.8 REGEX_EXTRACT
	6.8.1 Syntax
	6.8.2 Terms
	6.8.3 Usage
	6.8.4 Example

	6.9 REGEX_EXTRACT_ALL
	6.9.1 Syntax
	6.9.2 Terms
	6.9.3 Usage
	6.9.4 Example

	6.10 REGEX_SEARCH
	6.10.1 Syntax
	6.10.2 Terms
	6.10.3 Usage
	6.10.4 Example

	6.11 REPLACE
	6.11.1 Syntax
	6.11.2 Terms
	6.11.3 Usage

	6.12 RTRIM
	6.12.1 Syntax
	6.12.2 Terms
	6.12.3 Usage

	6.13 SPRINTF
	6.13.1 Syntax
	6.13.2 Terms
	6.13.3 Usage

	6.14 STARTSWITH
	6.14.1 Syntax
	6.14.2 Terms
	6.14.3 Usage

	6.15 STRSPLIT
	6.15.1 Syntax
	6.15.2 Terms
	6.15.3 Usage

	6.16 STRSPLITTOBAG
	6.16.1 Syntax
	6.16.2 Terms
	6.16.3 Usage

	6.17 SUBSTRING
	6.17.1 Syntax
	6.17.2 Terms
	6.17.3 Usage

	6.18 TRIM
	6.18.1 Syntax
	6.18.2 Terms
	6.18.3 Usage

	6.19 UCFIRST
	6.19.1 Syntax
	6.19.2 Terms
	6.19.3 Usage

	6.20 UPPER
	6.20.1 Syntax
	6.20.2 Terms
	6.20.3 Usage

	6.21 UniqueID
	6.21.1 Usage

	7 Datetime Functions
	7.1 AddDuration
	7.1.1 Syntax
	7.1.2 Terms
	7.1.3 Usage

	7.2 CurrentTime
	7.2.1 Syntax
	7.2.2 Usage

	7.3 DaysBetween
	7.3.1 Syntax
	7.3.2 Terms
	7.3.3 Usage

	7.4 GetDay
	7.4.1 Syntax
	7.4.2 Terms
	7.4.3 Usage

	7.5 GetHour
	7.5.1 Syntax
	7.5.2 Terms
	7.5.3 Usage

	7.6 GetMilliSecond
	7.6.1 Syntax
	7.6.2 Terms
	7.6.3 Usage

	7.7 GetMinute
	7.7.1 Syntax
	7.7.2 Terms
	7.7.3 Usage

	7.8 GetMonth
	7.8.1 Syntax
	7.8.2 Terms
	7.8.3 Usage

	7.9 GetSecond
	7.9.1 Syntax
	7.9.2 Terms
	7.9.3 Usage

	7.10 GetWeek
	7.10.1 Syntax
	7.10.2 Terms
	7.10.3 Usage

	7.11 GetWeekYear
	7.11.1 Syntax
	7.11.2 Terms
	7.11.3 Usage

	7.12 GetYear
	7.12.1 Syntax
	7.12.2 Terms
	7.12.3 Usage

	7.13 HoursBetween
	7.13.1 Syntax
	7.13.2 Terms
	7.13.3 Usage

	7.14 MilliSecondsBetween
	7.14.1 Syntax
	7.14.2 Terms
	7.14.3 Usage

	7.15 MinutesBetween
	7.15.1 Syntax
	7.15.2 Terms
	7.15.3 Usage

	7.16 MonthsBetween
	7.16.1 Syntax
	7.16.2 Terms
	7.16.3 Usage

	7.17 SecondsBetween
	7.17.1 Syntax
	7.17.2 Terms
	7.17.3 Usage

	7.18 SubtractDuration
	7.18.1 Syntax
	7.18.2 Terms
	7.18.3 Usage

	7.19 ToDate
	7.19.1 Syntax
	7.19.2 Terms
	7.19.3 Usage

	7.20 ToMilliSeconds
	7.20.1 Syntax
	7.20.2 Terms
	7.20.3 Usage

	7.21 ToString
	7.21.1 Syntax
	7.21.2 Terms
	7.21.3 Usage

	7.22 ToUnixTime
	7.22.1 Syntax
	7.22.2 Terms
	7.22.3 Usage

	7.23 WeeksBetween
	7.23.1 Syntax
	7.23.2 Terms
	7.23.3 Usage

	7.24 YearsBetween
	7.24.1 Syntax
	7.24.2 Terms
	7.24.3 Usage

	8 Tuple, Bag, Map Functions
	8.1 TOTUPLE
	8.1.1 Syntax
	8.1.2 Terms
	8.1.3 Usage
	8.1.4 Example

	8.2 TOBAG
	8.2.1 Syntax
	8.2.2 Terms
	8.2.3 Usage
	8.2.4 Example

	8.3 TOMAP
	8.3.1 Syntax
	8.3.2 Terms
	8.3.3 Usage
	8.3.4 Example

	8.4 TOP
	8.4.1 Syntax
	8.4.2 Terms
	8.4.3 Usage
	8.4.4 Example

	9 Hive UDF
	9.1 Syntax
	9.2 Terms
	9.3 Example

