
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Built In Functions

Table of contents

1 Introduction.. 2

2 Dynamic Invokers.. 2

3 Eval Functions..3

4 Load/Store Functions... 21

5 Math Functions...41

6 String Functions... 52

7 Datetime Functions...64

8 Tuple, Bag, Map Functions..74

9 Hive UDF... 78

Built In Functions

Page 2Copyright © 2007 The Apache Software Foundation. All rights reserved.

1 Introduction

Pig comes with a set of built in functions (the eval, load/store, math, string, bag and tuple
functions). Two main properties differentiate built in functions from user defined functions
(UDFs). First, built in functions don't need to be registered because Pig knows where they
are. Second, built in functions don't need to be qualified when they are used because Pig
knows where to find them.

2 Dynamic Invokers

Often you may need to use a simple function that is already provided by standard Java
libraries, but for which a user defined functions (UDF) has not been written. Dynamic
invokers allow you to refer to Java functions without having to wrap them in custom UDFs,
at the cost of doing some Java reflection on every function call.

...
DEFINE UrlDecode InvokeForString('java.net.URLDecoder.decode', 'String String');
encoded_strings = LOAD 'encoded_strings.txt' as (encoded:chararray);
decoded_strings = FOREACH encoded_strings GENERATE UrlDecode(encoded, 'UTF-8');
...

Currently, dynamic invokers can be used for any static function that:

• Accepts no arguments or accepts some combination of strings, ints, longs, doubles, floats,
or arrays with these same types

• Returns a string, an int, a long, a double, or a float

Only primitives can be used for numbers; no capital-letter numeric classes can be used
as arguments. Depending on the return type, a specific kind of invoker must be used:
InvokeForString, InvokeForInt, InvokeForLong, InvokeForDouble, or InvokeForFloat.

The DEFINE statement is used to bind a keyword to a Java method, as above. The first
argument to the InvokeFor* constructor is the full path to the desired method. The second
argument is a space-delimited ordered list of the classes of the method arguments. This can
be omitted or an empty string if the method takes no arguments. Valid class names are string,
long, float, double, and int. Invokers can also work with array arguments, represented in Pig
as DataBags of single-tuple elements. Simply refer to string[], for example. Class names are
not case sensitive.

The ability to use invokers on methods that take array arguments makes methods like those
in org.apache.commons.math.stat.StatUtils available (for processing the results of grouping
your datasets, for example). This is helpful, but a word of caution: the resulting UDF will not
be optimized for Hadoop, and the very significant benefits one gains from implementing the
Algebraic and Accumulator interfaces are lost here. Be careful if you use invokers this way.

udf.html
udf.html
basic.html#define

Built In Functions

Page 3Copyright © 2007 The Apache Software Foundation. All rights reserved.

3 Eval Functions

3.1 AVG

Computes the average of the numeric values in a single-column bag.

3.1.1 Syntax

AVG(expression)

3.1.2 Terms

expression Any expression whose result is a bag. The elements
of the bag should be data type int, long, float, double,
bigdecimal, biginteger or bytearray.

3.1.3 Usage

Use the AVG function to compute the average of the numeric values in a single-column bag.
AVG requires a preceding GROUP ALL statement for global averages and a GROUP BY
statement for group averages.

The AVG function ignores NULL values.

3.1.4 Example

In this example the average GPA for each student is computed (see the GROUP operator for
information about the field names in relation B).

A = LOAD 'student.txt' AS (name:chararray, term:chararray, gpa:float);

DUMP A;
(John,fl,3.9F)
(John,wt,3.7F)
(John,sp,4.0F)
(John,sm,3.8F)
(Mary,fl,3.8F)
(Mary,wt,3.9F)
(Mary,sp,4.0F)
(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;
(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})
(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

C = FOREACH B GENERATE A.name, AVG(A.gpa);

DUMP C;

basic.html#group

Built In Functions

Page 4Copyright © 2007 The Apache Software Foundation. All rights reserved.

({(John),(John),(John),(John)},3.850000023841858)
({(Mary),(Mary),(Mary),(Mary)},3.925000011920929)

3.1.5 Types Tables

int long float double bigdecimal biginteger chararray bytearray

AVG double double double double bigdecimal
*

bigdecimal
*

error cast as
double

* Average values for datatypes bigdecimal and biginteger have precision setting
java.math.MathContext.DECIMAL128.

3.2 BagToString

Concatenate the elements of a Bag into a chararray string, placing an optional delimiter
between each value.

3.2.1 Syntax

BagToString(vals:bag [, delimiter:chararray])

3.2.2 Terms

vals A bag of arbitrary values. They will each be cast to
chararray if they are not already.

delimiter A chararray value to place between elements of the
bag; defaults to underscore '_'.

3.2.3 Usage

BagToString creates a single string from the elements of a bag, similar to SQL's
GROUP_CONCAT function. Keep in mind the following:

• Bags can be of arbitrary size, while strings in Java cannot: you will either exhaust
available memory or exceed the maximum number of characters (about 2 billion). One
of the worst features a production job can have is thresholding behavior: everything will
seem nearly fine until the data size of your largest bag grows from nearly-too-big to just-
barely-too-big.

• Bags are disordered unless you explicitly apply a nested ORDER BY operation as
demonstrated below. A nested FOREACH will preserve ordering, letting you order by one
combination of fields then project out just the values you'd like to concatenate.

http://docs.oracle.com/javase/7/docs/api/java/math/MathContext.html#DECIMAL128

Built In Functions

Page 5Copyright © 2007 The Apache Software Foundation. All rights reserved.

• The default string conversion is applied to each element. If the bags contents are not
atoms (tuple, map, etc), this may be not be what you want. Use a nested FOREACH to
format values and then compose them with BagToString as shown below

Examples:

vals delimiter BagToString(vals,
delimiter)

Notes

{('BOS'),('NYA'),
('BAL')}

BOS_NYA_BAL If only one argument
is given, the field
is delimited with
underscore characters

{('BOS'),('NYA'),
('BAL')}

'|' BOS|NYA|BAL But you can supply your
own delimiter

{('BOS'),('NYA'),
('BAL')}

'' BOSNYABAL Use an explicit empty
string to just smush
everything together

{(1),(2),(3)} '|' 1|2|3 Elements are type-
converted for you (but
see examples below)

3.2.4 Examples

Simple delimited strings are simple:

team_parks = LOAD 'team_parks' AS (team_id:chararray, park_id:chararray,
 years:bag{(year_id:int)});

-- BOS BOS07 {(1995),(1997),(1996),(1998),(1999)}
-- NYA NYC16 {(1995),(1999),(1998),(1997),(1996)}
-- NYA NYC17 {(1998)}
-- SDN HON01 {(1997)}
-- SDN MNT01 {(1996),(1999)}
-- SDN SAN01 {(1999),(1997),(1998),(1995),(1996)}

team_parkslist = FOREACH (GROUP team_parks BY team_id) GENERATE
 group AS team_id, BagToString(team_parks.park_id, ';');

-- BOS BOS07
-- NYA NYC17;NYC16
-- SDN SAN01;MNT01;HON01

The default handling of complex elements works, but probably isn't what you want.

team_parkyearsugly = FOREACH (GROUP team_parks BY team_id) GENERATE
 group AS team_id,
 BagToString(team_parks.(park_id, years));

Built In Functions

Page 6Copyright © 2007 The Apache Software Foundation. All rights reserved.

-- BOS BOS07_{(1995),(1997),(1996),(1998),(1999)}
-- NYA NYC17_{(1998)}_NYC16_{(1995),(1999),(1998),(1997),(1996)}
-- SDN SAN01_{(1999),(1997),(1998),(1995),(1996)}_MNT01_{(1996),(1999)}_HON01_{(1997)}

Instead, assemble it in pieces. In step 2, we sort on one field but process another; it remains
in the sorted order.

team_park_yearslist = FOREACH team_parks {
 years_o = ORDER years BY year_id;
 GENERATE team_id, park_id, SIZE(years_o) AS n_years, BagToString(years_o, '/') AS
 yearslist;
};
team_parkyearslist = FOREACH (GROUP team_park_yearslist BY team_id) {
 tpy_o = ORDER team_park_yearslist BY n_years DESC, park_id ASC;
 tpy_f = FOREACH tpy_o GENERATE CONCAT(park_id, ':', yearslist);
 GENERATE group AS team_id, BagToString(tpy_f, ';');
 };

-- BOS BOS07:1995/1996/1997/1998/1999
-- NYA NYC16:1995/1996/1997/1998/1999;NYC17:1998
-- SDN SAN01:1995/1996/1997/1998/1999;MNT01:1996/1999;HON01:1997

3.3 BagToTuple

Un-nests the elements of a bag into a tuple.

3.3.1 Syntax

BagToTuple(expression)

3.3.2 Terms

expression An expression with data type bag.

3.3.3 Usage

BagToTuple creates a tuple from the elements of a bag. It removes only the first level of
nesting; it does not recursively un-nest nested bags. Unlike FLATTEN, BagToTuple will not
generate multiple output records per input record.

3.3.4 Examples

In this example, a bag containing tuples with one field is converted to a tuple.

A = LOAD 'bag_data' AS (B1:bag{T1:tuple(f1:chararray)});

DUMP A;
({('a'),('b'),('c')})

Built In Functions

Page 7Copyright © 2007 The Apache Software Foundation. All rights reserved.

({('d'),('e'),('f')})

X = FOREACH A GENERATE BagToTuple(B1);

DUMP X;
(('a','b','c'))
(('d','e','f'))

In this example, a bag containing tuples with two fields is converted to a tuple.

A = LOAD 'bag_data' AS (B1:bag{T1:tuple(f1:int,f2:int)});

DUMP A;
({(4,1),(7,8),(4,9)})
({(5,8),(4,3),(3,8)})

X = FOREACH A GENERATE BagToTuple(B1);

DUMP X;
((4,1,7,8,4,9))
((5,8,4,3,3,8))

3.4 Bloom

Bloom filters are a common way to select a limited set of records before moving data for a
join or other heavy weight operation.

3.4.1 Syntax

BuildBloom(String hashType, String mode, String vectorSize, String nbHash)

Bloom(String filename)

3.4.2 Terms

hashtype The type of hash function to use. Valid values for the
hash functions are 'jenkins' and 'murmur'.

mode Will be ignored, though by convention it should be
"fixed" or "fixedsize"

vectorSize The number of bits in the bloom filter.

nbHash The number of hash functions used in constructing
the bloom filter.

filename File containing the serialized Bloom filter.

See Bloom Filter for a discussion of how to select the number of bits and the number of hash
functions.

http://en.wikipedia.org/wiki/Bloom_filter

Built In Functions

Page 8Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.4.3 Usage

Bloom filters are a common way to select a limited set of records before moving data for a
join or other heavy weight operation. For example, if one wanted to join a very large data set
L with a smaller set S, and it was known that the number of keys in L that will match with
S is small, building a bloom filter on S and then applying it to L before the join can greatly
reduce the number of records from L that have to be moved from the map to the reduce, thus
speeding the join.

The implementation uses Hadoop's bloom filters (org.apache.hadoop.util.bloom.BloomFilter)
internally.

3.4.4 Examples

 define bb BuildBloom('128', '3', 'jenkins');
 small = load 'S' as (x, y, z);
 grpd = group small all;
 fltrd = foreach grpd generate bb(small.x);
 store fltrd in 'mybloom';
 exec;
 define bloom Bloom('mybloom');
 large = load 'L' as (a, b, c);
 flarge = filter large by bloom(L.a);
 joined = join small by x, flarge by a;
 store joined into 'results';

3.5 CONCAT

Concatenates two or more expressions of identical type.

3.5.1 Syntax

CONCAT (expression, expression, [...expression])

3.5.2 Terms

expression Any expression.

3.5.3 Usage

Use the CONCAT function to concatenate two or more expressions. The result values of the
expressions must have identical types.

If any subexpression is null, the resulting expression is null.

Built In Functions

Page 9Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.5.4 Example

In this example, fields f1, an underscore string literal, f2 and f3 are concatenated.

A = LOAD 'data' as (f1:chararray, f2:chararray, f3:chararray);

DUMP A;
(apache,open,source)
(hadoop,map,reduce)
(pig,pig,latin)

X = FOREACH A GENERATE CONCAT(f1, '_', f2,f3);

DUMP X;
(apache_opensource)
(hadoop_mapreduce)
(pig_piglatin)

3.6 COUNT

Computes the number of elements in a bag.

3.6.1 Syntax

COUNT(expression)

3.6.2 Terms

expression An expression with data type bag.

3.6.3 Usage

Use the COUNT function to compute the number of elements in a bag. COUNT requires a
preceding GROUP ALL statement for global counts and a GROUP BY statement for group
counts.

The COUNT function follows syntax semantics and ignores nulls. What this means is that a
tuple in the bag will not be counted if the FIRST FIELD in this tuple is NULL. If you want to
include NULL values in the count computation, use COUNT_STAR.

Note: You cannot use the tuple designator (*) with COUNT; that is, COUNT(*) will not
work.

3.6.4 Example

In this example the tuples in the bag are counted (see the GROUP operator for information
about the field names in relation B).

basic.html#group

Built In Functions

Page 10Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = GROUP A BY f1;

DUMP B;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})
(7,{(7,2,5)})
(8,{(8,3,4),(8,4,3)})

X = FOREACH B GENERATE COUNT(A);

DUMP X;
(1L)
(2L)
(1L)
(2L)

3.6.5 Types Tables

int long float double chararray bytearray

COUNT long long long long long long

3.7 COUNT_STAR

Computes the number of elements in a bag.

3.7.1 Syntax

COUNT_STAR(expression)

3.7.2 Terms

expression An expression with data type bag.

3.7.3 Usage

Use the COUNT_STAR function to compute the number of elements in a bag.
COUNT_STAR requires a preceding GROUP ALL statement for global counts and a
GROUP BY statement for group counts.

Built In Functions

Page 11Copyright © 2007 The Apache Software Foundation. All rights reserved.

COUNT_STAR includes NULL values in the count computation (unlike COUNT, which
ignores NULL values).

3.7.4 Example

In this example COUNT_STAR is used to count the tuples in a bag.

X = FOREACH B GENERATE COUNT_STAR(A);

3.8 DIFF

Compares two fields in a tuple.

3.8.1 Syntax

DIFF (expression, expression)

3.8.2 Terms

expression An expression with any data type.

3.8.3 Usage

The DIFF function takes two bags as arguments and compares them. Any tuples that are in
one bag but not the other are returned in a bag. If the bags match, an empty bag is returned.
If the fields are not bags then they will be wrapped in tuples and returned in a bag if they do
not match, or an empty bag will be returned if the two records match. The implementation
assumes that both bags being passed to the DIFF function will fit entirely into memory
simultaneously. If this is not the case the UDF will still function but it will be VERY slow.

3.8.4 Example

In this example DIFF compares the tuples in two bags.

A = LOAD 'bag_data' AS (B1:bag{T1:tuple(t1:int,t2:int)},B2:bag{T2:tuple(f1:int,f2:int)});

DUMP A;
({(8,9),(0,1)},{(8,9),(1,1)})
({(2,3),(4,5)},{(2,3),(4,5)})
({(6,7),(3,7)},{(2,2),(3,7)})

DESCRIBE A;
a: {B1: {T1: (t1: int,t2: int)},B2: {T2: (f1: int,f2: int)}}

X = FOREACH A GENERATE DIFF(B1,B2);

grunt> dump x;

Built In Functions

Page 12Copyright © 2007 The Apache Software Foundation. All rights reserved.

({(0,1),(1,1)})
({})
({(6,7),(2,2)})

3.9 IsEmpty

Checks if a bag or map is empty.

3.9.1 Syntax

IsEmpty(expression)

3.9.2 Terms

expression An expression with any data type.

3.9.3 Usage

The IsEmpty function checks if a bag or map is empty (has no data). The function can be
used to filter data.

3.9.4 Example

In this example all students with an SSN but no name are located.

SSN = load 'ssn.txt' using PigStorage() as (ssn:long);

SSN_NAME = load 'students.txt' using PigStorage() as (ssn:long, name:chararray);

/* do a cogroup of SSN with SSN_Name */
X = COGROUP SSN by ssn, SSN_NAME by ssn;

/* only keep those ssn's for which there is no name */
Y = filter X by IsEmpty(SSN_NAME);

3.10 MAX

Computes the maximum of the numeric values or chararrays in a single-column bag. MAX
requires a preceding GROUP ALL statement for global maximums and a GROUP BY
statement for group maximums.

3.10.1 Syntax

MAX(expression)

Built In Functions

Page 13Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.10.2 Terms

expression An expression with data types int, long, float, double,
bigdecimal, biginteger, chararray, datetime or
bytearray.

3.10.3 Usage

Use the MAX function to compute the maximum of the numeric values or chararrays in a
single-column bag.

The MAX function ignores NULL values.

3.10.4 Example

In this example the maximum GPA for all terms is computed for each student (see the
GROUP operator for information about the field names in relation B).

A = LOAD 'student' AS (name:chararray, session:chararray, gpa:float);

DUMP A;
(John,fl,3.9F)
(John,wt,3.7F)
(John,sp,4.0F)
(John,sm,3.8F)
(Mary,fl,3.8F)
(Mary,wt,3.9F)
(Mary,sp,4.0F)
(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;
(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})
(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

X = FOREACH B GENERATE group, MAX(A.gpa);

DUMP X;
(John,4.0F)
(Mary,4.0F)

3.10.5 Types Tables

int long float double bigdecimalbiginteger chararray datetime bytearray

MAX int long float double bigdecimalbiginteger chararray datetime cast as
double

Built In Functions

Page 14Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.11 MIN

Computes the minimum of the numeric values or chararrays in a single-column bag. MIN
requires a preceding GROUP… ALL statement for global minimums and a GROUP … BY
statement for group minimums.

3.11.1 Syntax

MIN(expression)

3.11.2 Terms

expression An expression with data types int, long, float, double,
bigdecimal, biginteger, chararray, datetime or
bytearray.

3.11.3 Usage

Use the MIN function to compute the minimum of a set of numeric values or chararrays in a
single-column bag.

The MIN function ignores NULL values.

3.11.4 Example

In this example the minimum GPA for all terms is computed for each student (see the
GROUP operator for information about the field names in relation B).

A = LOAD 'student' AS (name:chararray, session:chararray, gpa:float);

DUMP A;
(John,fl,3.9F)
(John,wt,3.7F)
(John,sp,4.0F)
(John,sm,3.8F)
(Mary,fl,3.8F)
(Mary,wt,3.9F)
(Mary,sp,4.0F)
(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;
(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})
(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

X = FOREACH B GENERATE group, MIN(A.gpa);

DUMP X;
(John,3.7F)

Built In Functions

Page 15Copyright © 2007 The Apache Software Foundation. All rights reserved.

(Mary,3.8F)

3.11.5 Types Tables

int long float double bigdecimalbiginteger chararray datetime bytearray

MIN int long float double bigdecimalbiginteger chararray datetime cast as
double

3.12 PluckTuple

Allows the user to specify a string prefix, and then filter for the columns in a relation that
begin with that prefix or match that regex pattern. Optionally, include flag 'false' to filter for
columns that do not match that prefix or match that regex pattern

3.12.1 Syntax

DEFINE pluck PluckTuple(expression1)

DEFINE pluck PluckTuple(expression1,expression3)

pluck(expression2)

3.12.2 Terms

expression1 A prefix to pluck by or an regex pattern to pluck by

expression2 The fields to apply the pluck to, usually '*'

expression3 A boolean flag to indicate whether to include or
exclude matching columns

3.12.3 Usage

Example:

a = load 'a' as (x, y);
b = load 'b' as (x, y);
c = join a by x, b by x;
DEFINE pluck PluckTuple('a::');
d = foreach c generate FLATTEN(pluck(*));
describe c;
c: {a::x: bytearray,a::y: bytearray,b::x: bytearray,b::y: bytearray}
describe d;
d: {plucked::a::x: bytearray,plucked::a::y: bytearray}
DEFINE pluckNegative PluckTuple('a::','false');
d = foreach c generate FLATTEN(pluckNegative(*));
describe d;
d: {plucked::b::x: bytearray,plucked::b::y: bytearray}

Built In Functions

Page 16Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.13 SIZE

Computes the number of elements based on any Pig data type.

3.13.1 Syntax

SIZE(expression)

3.13.2 Terms

expression An expression with any data type.

3.13.3 Usage

Use the SIZE function to compute the number of elements based on the data type (see the
Types Tables below). SIZE includes NULL values in the size computation. SIZE is not
algebraic.

If the tested object is null, the SIZE function returns null.

3.13.4 Example

In this example the number of characters in the first field is computed.

A = LOAD 'data' as (f1:chararray, f2:chararray, f3:chararray);
(apache,open,source)
(hadoop,map,reduce)
(pig,pig,latin)

X = FOREACH A GENERATE SIZE(f1);

DUMP X;
(6L)
(6L)
(3L)

3.13.5 Types Tables

int returns 1

long returns 1

float returns 1

double returns 1

chararray returns number of characters in the array

bytearray returns number of bytes in the array

Built In Functions

Page 17Copyright © 2007 The Apache Software Foundation. All rights reserved.

tuple returns number of fields in the tuple

bag returns number of tuples in bag

map returns number of key/value pairs in map

3.14 SUBTRACT

Bags subtraction, SUBTRACT(bag1, bag2) = bags composed of bag1 elements not in bag2

3.14.1 Syntax

SUBTRACT(expression, expression)

3.14.2 Terms

expression An expression with data type bag.

3.14.3 Usage

SUBTRACT takes two bags as arguments and returns a new bag composed of the tuples of
first bag are not in the second bag.

If null, bag arguments are replaced by empty bags.
If arguments are not bags, an IOException is thrown.

The implementation assumes that both bags being passed to the SUBTRACT function will fit
entirely into memory simultaneously, if this is not the case, SUBTRACT will still function
but will be very slow.

3.14.4 Example

In this example, SUBTRACT creates a new bag composed of B1 elements that are not in B2.

A = LOAD 'bag_data' AS (B1:bag{T1:tuple(t1:int,t2:int)},B2:bag{T2:tuple(f1:int,f2:int)});

DUMP A;
({(8,9),(0,1),(1,2)},{(8,9),(1,1)})
({(2,3),(4,5)},{(2,3),(4,5)})
({(6,7),(3,7),(3,7)},{(2,2),(3,7)})

DESCRIBE A;
A: {B1: {T1: (t1: int,t2: int)},B2: {T2: (f1: int,f2: int)}}

X = FOREACH A GENERATE SUBTRACT(B1,B2);

DUMP X;
({(0,1),(1,2)})
({})

Built In Functions

Page 18Copyright © 2007 The Apache Software Foundation. All rights reserved.

({(6,7)})

3.15 SUM

Computes the sum of the numeric values in a single-column bag. SUM requires a preceding
GROUP ALL statement for global sums and a GROUP BY statement for group sums.

3.15.1 Syntax

SUM(expression)

3.15.2 Terms

expression An expression with data types int, long, float, double,
bigdecimal, biginteger or bytearray cast as double.

3.15.3 Usage

Use the SUM function to compute the sum of a set of numeric values in a single-column bag.

The SUM function ignores NULL values.

3.15.4 Example

In this example the number of pets is computed. (see the GROUP operator for information
about the field names in relation B).

A = LOAD 'data' AS (owner:chararray, pet_type:chararray, pet_num:int);

DUMP A;
(Alice,turtle,1)
(Alice,goldfish,5)
(Alice,cat,2)
(Bob,dog,2)
(Bob,cat,2)

B = GROUP A BY owner;

DUMP B;
(Alice,{(Alice,turtle,1),(Alice,goldfish,5),(Alice,cat,2)})
(Bob,{(Bob,dog,2),(Bob,cat,2)})

X = FOREACH B GENERATE group, SUM(A.pet_num);
DUMP X;
(Alice,8L)
(Bob,4L)

Built In Functions

Page 19Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.15.5 Types Tables

int long float double bigdecimal biginteger chararray bytearray

SUM long long double double bigdecimal biginteger error cast as
double

3.16 IN

IN operator allows you to easily test if an expression matches any value in a list of values. It
is used to reduce the need for multiple OR conditions.

3.16.1 Syntax

IN (expression)

3.16.2 Terms

expression An expression with data types chararray, int, long,
float, double, bigdecimal, biginteger or bytearray.

3.16.3 Usage

IN operator allows you to easily test if an expression matches any value in a list of values. It
is used to help reduce the need for multiple OR conditions.

3.16.4 Example

In this example we filter out ID 4 and 6.

A = load 'data' using PigStorage(',') AS (id:int, first:chararray, last:chararray,
 gender:chararray);

DUMP A;
(1,Christine,Romero,Female)
(2,Sara,Hansen,Female)
(3,Albert,Rogers,Male)
(4,Kimberly,Morrison,Female)
(5,Eugene,Baker,Male)
(6,Ann,Alexander,Female)
(7,Kathleen,Reed,Female)
(8,Todd,Scott,Male)
(9,Sharon,Mccoy,Female)
(10,Evelyn,Rice,Female)

X = FILTER A BY id IN (4, 6);
DUMP X;
(4,Kimberly,Morrison,Female)
(6,Ann,Alexander,Female)

Built In Functions

Page 20Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example, we're passing a BigInteger and using NOT operator, thereby negating the
passed list of fields in the IN clause

A = load 'data' using PigStorage(',') AS (id:biginteger, first:chararray, last:chararray,
 gender:chararray);
X = FILTER A BY NOT id IN (1, 3, 5, 7, 9);
DUMP X;

(2,Sara,Hansen,Female)
(4,Kimberly,Morrison,Female)
(6,Ann,Alexander,Female)
(8,Todd,Scott,Male)
(10,Evelyn,Rice,Female)

3.17 TOKENIZE

Splits a string and outputs a bag of words.

3.17.1 Syntax

TOKENIZE(expression [, 'field_delimiter'])

3.17.2 Terms

expression An expression with data type chararray.

'field_delimiter' An optional field delimiter (in single quotes).

If field_delimiter is null or not passed, the following
will be used as delimiters: space [], double quote
["], coma [,] parenthesis [()], star [*].

3.17.3 Usage

Use the TOKENIZE function to split a string of words (all words in a single tuple) into a bag
of words (each word in a single tuple).

3.17.4 Example

In this example the strings in each row are split.

A = LOAD 'data' AS (f1:chararray);

DUMP A;
(Here is the first string.)
(Here is the second string.)
(Here is the third string.)

X = FOREACH A GENERATE TOKENIZE(f1);

Built In Functions

Page 21Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP X;
({(Here),(is),(the),(first),(string.)})
({(Here),(is),(the),(second),(string.)})
({(Here),(is),(the),(third),(string.)})

In this example a field delimiter is specified.

{code}
A = LOAD 'data' AS (f1:chararray);
B = FOREACH A GENERATE TOKENIZE (f1,'||');
DUMP B;
{code}

4 Load/Store Functions

Load/store functions determine how data goes into Pig and comes out of Pig. Pig provides a
set of built-in load/store functions, described in the sections below. You can also write your
own load/store functions (see User Defined Functions).

4.1 Handling Compression

Support for compression is determined by the load/store function. PigStorage and
TextLoader support gzip and bzip compression for both read (load) and write (store).
BinStorage does not support compression.

To work with gzip compressed files, input/output files need to have a .gz extension. Gzipped
files cannot be split across multiple maps; this means that the number of maps created is
equal to the number of part files in the input location.

A = load 'myinput.gz';
store A into 'myoutput.gz';

To work with bzip compressed files, the input/output files need to have a .bz or .bz2
extension. Because the compression is block-oriented, bzipped files can be split across
multiple maps.

A = load 'myinput.bz';
store A into 'myoutput.bz';

Note: PigStorage and TextLoader correctly read compressed files as long as they are NOT
CONCATENATED bz/bz2 FILES generated in this manner:

• cat *.bz > text/concat.bz
• cat *.bz2 > text/concat.bz2

udf.html

Built In Functions

Page 22Copyright © 2007 The Apache Software Foundation. All rights reserved.

If you use concatenated bzip files with your Pig jobs, you will NOT see a failure but the
results will be INCORRECT.

4.2 BinStorage

Loads and stores data in machine-readable format.

4.2.1 Syntax

BinStorage()

4.2.2 Terms

none no parameters

4.2.3 Usage

Pig uses BinStorage to load and store the temporary data that is generated between multiple
MapReduce jobs.

• BinStorage works with data that is represented on disk in machine-readable format.
BinStorage does NOT support compression.

• BinStorage supports multiple locations (files, directories, globs) as input.

Occasionally, users use BinStorage to store their own data. However, because BinStorage is
a proprietary binary format, the original data is never in BinStorage - it is always a derivation
of some other data.

We have seen several examples of users doing something like this:

a = load 'b.txt' as (id, f);
b = group a by id;
store b into 'g' using BinStorage();

And then later:

a = load 'g/part*' using BinStorage() as (id, d:bag{t:(v, s)});
b = foreach a generate (double)id, flatten(d);
dump b;

There is a problem with this sequence of events. The first script does not define data types
and, as the result, the data is stored as a bytearray and a bag with a tuple that contains two
bytearrays. The second script attempts to cast the bytearray to double; however, since the
data originated from a different loader, it has no way to know the format of the bytearray or
how to cast it to a different type. To solve this problem, Pig:

Built In Functions

Page 23Copyright © 2007 The Apache Software Foundation. All rights reserved.

• Sends an error message when the second script is executed: "ERROR 1118: Cannot cast
bytes loaded from BinStorage. Please provide a custom converter."

• Allows you to use a custom converter to perform the casting.

a = load 'g/part*' using BinStorage('Utf8StorageConverter') as (id, d:bag{t:(v, s)});
b = foreach a generate (double)id, flatten(d);
dump b;

4.2.4 Examples

In this example BinStorage is used with the LOAD and STORE functions.

A = LOAD 'data' USING BinStorage();

STORE X into 'output' USING BinStorage();

In this example BinStorage is used to load multiple locations.

A = LOAD 'input1.bin, input2.bin' USING BinStorage();

BinStorage does not track data lineage. When Pig uses BinStorage to move data between
MapReduce jobs, Pig can figure out the correct cast function to use and apply it. However, as
shown in the example below, when you store data using BinStorage and then use a separate
Pig Latin script to read data (thus loosing the type information), it is your responsibility to
correctly cast the data before storing it using BinStorage.

raw = load 'sampledata' using BinStorage() as (col1,col2, col3);
--filter out null columns
A = filter raw by col1#'bcookie' is not null;

B = foreach A generate col1#'bcookie' as reqcolumn;
describe B;
--B: {regcolumn: bytearray}
X = limit B 5;
dump X;
(36co9b55onr8s)
(36co9b55onr8s)
(36hilul5oo1q1)
(36hilul5oo1q1)
(36l4cj15ooa8a)

B = foreach A generate (chararray)col1#'bcookie' as convertedcol;
describe B;
--B: {convertedcol: chararray}
X = limit B 5;
dump X;
()
()
()
()

Built In Functions

Page 24Copyright © 2007 The Apache Software Foundation. All rights reserved.

()

4.3 JsonLoader, JsonStorage

Load or store JSON data.

4.3.1 Syntax

JsonLoader(['schema'])

JsonStorage()

4.3.2 Terms

schema An optional Pig schema, in single quotes.

4.3.3 Usage

Use JsonLoader to load JSON data.

Use JsonStorage to store JSON data.

Note that there is no concept of delimit in JsonLoader or JsonStorage. The data is encoded in
standard JSON format. JsonLoader optionally takes a schema as the construct argument.

4.3.4 Examples

In this example data is loaded with a schema.

a = load 'a.json' using JsonLoader('a0:int,a1:{(a10:int,a11:chararray)},a2:
(a20:double,a21:bytearray),a3:[chararray]');

In this example data is loaded without a schema; it assumes there is a .pig_schema (produced
by JsonStorage) in the input directory.

a = load 'a.json' using JsonLoader();

4.4 PigDump

Stores data in UTF-8 format.

4.4.1 Syntax

PigDump()

Built In Functions

Page 25Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.4.2 Terms

none no parameters

4.4.3 Usage

PigDump stores data as tuples in human-readable UTF-8 format.

4.4.4 Example

In this example PigDump is used with the STORE function.

STORE X INTO 'output' USING PigDump();

4.5 PigStorage

Loads and stores data as structured text files.

4.5.1 Syntax

PigStorage([field_delimiter] , ['options'])

4.5.2 Terms

field_delimiter The default field delimiter is tab ('\t').

You can specify other characters as field delimiters;
however, be sure to encase the characters in single
quotes.

'options' A string that contains space-separated options
('optionA optionB optionC')

Currently supported options are:

• ('schema') - Stores the schema of the relation
using a hidden JSON file.

• ('noschema') - Ignores a stored schema during
the load.

• ('tagsource') - (deprecated, Use tagPath instead)
Add a first column indicates the input file of the
record.

• ('tagPath') - Add a first column indicates the
input path of the record.

• ('tagFile') - Add a first column indicates the input
file name of the record.

Built In Functions

Page 26Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.5.3 Usage

PigStorage is the default function used by Pig to load/store the data. PigStorage supports
structured text files (in human-readable UTF-8 format) in compressed or uncompressed form
(see Handling Compression). All Pig data types (both simple and complex) can be read/
written using this function. The input data to the load can be a file, a directory or a glob.

Load/Store Statements

Load statements – PigStorage expects data to be formatted using field delimiters, either the
tab character ('\t') or other specified character.

Store statements – PigStorage outputs data using field delimiters, either the tab character ('\t')
or other specified character, and the line feed record delimiter ('\n').

Field/Record Delimiters

Field Delimiters – For load and store statements the default field delimiter is the tab character
('\t'). You can use other characters as field delimiters, but separators such as ^A or Ctrl-A
should be represented in Unicode (\u0001) using UTF-16 encoding (see Wikipedia ASCII,
Unicode, and UTF-16).

Record Deliminters – For load statements Pig interprets the line feed ('\n'), carriage return
('\r' or CTRL-M) and combined CR + LF ('\r\n') characters as record delimiters (do not use
these characters as field delimiters). For store statements Pig uses the line feed ('\n') character
as the record delimiter.

Schemas

If the schema option is specified, a hidden ".pig_schema" file is created in the output
directory when storing data. It is used by PigStorage (with or without -schema) during
loading to determine the field names and types of the data without the need for a user to
explicitly provide the schema in an as clause, unless noschema is specified. No attempt to
merge conflicting schemas is made during loading. The first schema encountered during a
file system scan is used.

Additionally, if the schema option is specified, a ".pig_headers" file is created in the output
directory. This file simply lists the delimited aliases. This is intended to make export to tools
that can read files with header lines easier (just cat the header to your data).

If the schema option is NOT specified, a schema will not be written when storing data.

If the noschema option is NOT specified, and a schema is found, it gets loaded when loading
data.

Note that regardless of whether or not you store the schema, you always need to specify the
correct delimiter to read your data. If you store using delimiter "#" and then load using the
default delimiter, your data will not be parsed correctly.

Record Provenance

basic.html#data-types
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-16

Built In Functions

Page 27Copyright © 2007 The Apache Software Foundation. All rights reserved.

If tagPath or tagFile option is specified, PigStorage will add a pseudo-column
INPUT_FILE_PATH or INPUT_FILE_NAME respectively to the beginning of the record.
As the name suggests, it is the input file path/name containing this particular record. Please
note tagsource is deprecated.

Complex Data Types

The formats for complex data types are shown here:

• Tuple: enclosed by (), items separated by ","
• Non-empty tuple: (item1,item2,item3)
• Empty tuple is valid: ()

• Bag: enclosed by {}, tuples separated by ","
• Non-empty bag: {code}{(tuple1),(tuple2),(tuple3)}{code}
• Empty bag is valid: {}

• Map: enclosed by [], items separated by ",", key and value separated by "#"
• Non-empty map: [key1#value1,key2#value2]
• Empty map is valid: []

If load statement specify a schema, Pig will convert the complex type according to schema. If
conversion fails, the affected item will be null (see Nulls and Pig Latin).

4.5.4 Examples

In this example PigStorage expects input.txt to contain tab-separated fields and newline-
separated records. The statements are equivalent.

A = LOAD 'student' USING PigStorage('\t') AS (name: chararray, age:int, gpa: float);

A = LOAD 'student' AS (name: chararray, age:int, gpa: float);

In this example PigStorage stores the contents of X into files with fields that are delimited
with an asterisk (*). The STORE statement specifies that the files will be located in
a directory named output and that the files will be named part-nnnnn (for example,
part-00000).

STORE X INTO 'output' USING PigStorage('*');

In this example, PigStorage loads data with complex data type, a bag of map and double.

a = load '1.txt' as (a0:{t:(m:map[int],d:double)});

{([foo#1,bar#2],34.0),([white#3,yellow#4],45.0)} : valid
{([foo#badint],baddouble)} : conversion fail for badint/baddouble, get {([foo#],)}
{} : valid, empty bag

basic.html#tuple
basic.html#bag
basic.html#map
basic.html#nulls

Built In Functions

Page 28Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.6 TextLoader

Loads unstructured data in UTF-8 format.

4.6.1 Syntax

TextLoader()

4.6.2 Terms

none no parameters

4.6.3 Usage

TextLoader works with unstructured data in UTF8 format. Each resulting tuple contains a
single field with one line of input text. TextLoader also supports compression.

Currently, TextLoader support for compression is limited.

TextLoader cannot be used to store data.

4.6.4 Example

In this example TextLoader is used with the LOAD function.

A = LOAD 'data' USING TextLoader();

4.7 HBaseStorage

Loads and stores data from an HBase table.

4.7.1 Syntax

HBaseStorage('columns', ['options'])

4.7.2 Terms

columns A list of qualified HBase columns to read data from
or store data to. The column family name and column
qualifier are seperated by a colon (:). Only the
columns used in the Pig script need to be specified.
Columns are specified in one of three different ways
as described below.

• Explicitly specify a column family and column
qualifier (e.g., user_info:id). This will produce a
scalar in the resultant tuple.

Built In Functions

Page 29Copyright © 2007 The Apache Software Foundation. All rights reserved.

• Specify a column family and a portion of column
qualifier name as a prefix followed by an asterisk
(i.e., user_info:address_*). This approach is
used to read one or more columns from the same
column family with a matching descriptor prefix.
The datatype for this field will be a map of
column descriptor name to field value. Note that
combining this style of prefix with a long list of
fully qualified column descriptor names could
cause perfomance degredation on the HBase
scan. This will produce a Pig map in the resultant
tuple with column descriptors as keys.

• Specify all the columns of a column family using
the column family name followed by an asterisk
(i.e., user_info:*). This will produce a Pig map
in the resultant tuple with column descriptors as
keys.

'options' A string that contains space-separated options
(‘-optionA=valueA -optionB=valueB -
optionC=valueC’)

Currently supported options are:

• -loadKey=(true|false) Load the row key as the
first value in every tuple returned from HBase
(default=false)

• -gt=minKeyVal Return rows with a rowKey
greater than minKeyVal

• -lt=maxKeyVal Return rows with a rowKey less
than maxKeyVal

• -regex=regex Return rows with a rowKey that
match this regex on KeyVal

• -gte=minKeyVal Return rows with a rowKey
greater than or equal to minKeyVal

• -lte=maxKeyVal Return rows with a rowKey
less than or equal to maxKeyVal

• -limit=numRowsPerRegion Max number of rows
to retrieve per region

• -caching=numRows Number of rows to cache
(faster scans, more memory)

• -delim=delimiter Column delimiter in columns
list (default is whitespace)

• -ignoreWhitespace=(true|false) When delim is
set to something other than whitespace, ignore
spaces when parsing column list (default=true)

• -caster=(HBaseBinaryConverter|
Utf8StorageConverter) Class name
of Caster to use to convert values

Built In Functions

Page 30Copyright © 2007 The Apache Software Foundation. All rights reserved.

(default=Utf8StorageConverter). The
default caster can be overridden with the
pig.hbase.caster config param. Casters must
implement LoadStoreCaster.

• -noWAL=(true|false) During storage, sets
the write ahead to false for faster loading
into HBase (default=false). To be used
with extreme caution since this could result
in data loss (see http://hbase.apache.org/
book.html#perf.hbase.client.putwal).

• -minTimestamp=timestamp Return cell values
that have a creation timestamp greater or equal to
this value

• -maxTimestamp=timestamp Return cell values
that have a creation timestamp less than this
value

• -timestamp=timestamp Return cell values that
have a creation timestamp equal to this value

• -includeTimestamp=Record will include the
timestamp after the rowkey on store (rowkey,
timestamp, ...)

• -includeTombstone=Record will include a
tombstone marker on store after the rowKey and
timestamp (if included) (rowkey, [timestamp,]
tombstone, ...)

4.7.3 Usage

HBaseStorage stores and loads data from HBase. The function takes two arguments. The
first argument is a space seperated list of columns. The second optional argument is a space
seperated list of options. Column syntax and available options are listed above. Note that
HBaseStorage always disable split combination.

4.7.4 Load Example

In this example HBaseStorage is used with the LOAD function with an explicit schema.

raw = LOAD 'hbase://SomeTableName'
 USING org.apache.pig.backend.hadoop.hbase.HBaseStorage(
 'info:first_name info:last_name tags:work_* info:*', '-loadKey=true -limit=5') AS
 (id:bytearray, first_name:chararray, last_name:chararray, tags_map:map[],
 info_map:map[]);

The datatypes of the columns are declared with the "AS" clause. The first_name and
last_name columns are specified as fully qualified column names with a chararray datatype.
The third specification of tags:work_* requests a set of columns in the tags column family
that begin with "work_". There can be zero, one or more columns of that type in the HBase

http://hbase.apache.org/book.html#perf.hbase.client.putwal
http://hbase.apache.org/book.html#perf.hbase.client.putwal

Built In Functions

Page 31Copyright © 2007 The Apache Software Foundation. All rights reserved.

table. The type is specified as tags_map:map[]. This indicates that the set of column values
returned will be accessed as a map, where the key is the column name and the value is the
cell value of the column. The fourth column specification is also a map of column descriptors
to cell values.

When the type of the column is specified as a map in the "AS" clause, the map keys are the
column descriptor names and the data type is chararray. The datatype of the columns values
can be declared explicitly as shown in the examples below:

• tags_map[chararray] - In this case, the column values are all declared to be of type
chararray

• tags_map[int] - In this case, the column values are all declared to be of type int.

4.7.5 Store Example

In this example HBaseStorage is used to store a relation into HBase.

A = LOAD 'hdfs_users' AS (id:bytearray, first_name:chararray, last_name:chararray);
STORE A INTO 'hbase://users_table' USING org.apache.pig.backend.hadoop.hbase.HBaseStorage(
 'info:first_name info:last_name');

In the example above relation A is loaded from HDFS and stored in HBase. Note that the
schema of relation A is a tuple of size 3, but only two column descriptor names are passed to
the HBaseStorage constructor. This is because the first entry in the tuple is used as the HBase
rowKey.

4.8 AvroStorage

Loads and stores data from Avro files.

4.8.1 Syntax

AvroStorage(['schema|record name'], ['options'])

4.8.2 Terms

schema A JSON string specifying the Avro schema for
the input. You may specify an explicit schema
when storing data or when loading data. When you
manually provide a schema, Pig will use the provided
schema for serialization and deserialization. This
means that you can provide an explicit schema when
saving data to simplify the output (for example by
removing nullable unions), or rename fields. This
also means that you can provide an explicit schema

Built In Functions

Page 32Copyright © 2007 The Apache Software Foundation. All rights reserved.

when reading data to only read a subset of the fields
in each record.

See the Apache Avro Documentation for more
details on how to specify a valid schema.

record name When storing a bag of tuples with AvroStorage, if
you do not want to specify the full schema, you may
specify the avro record name instead. (AvroStorage
will determine that the argument isn't a valid schema
definition and use it as a variable name instead.)

'options' A string that contains space-separated options (‘-
optionA valueA -optionB valueB -optionC ’)

Currently supported options are:

• -namespace nameSpace or -n nameSpace
Explicitly specify the namespace field in Avro
records when storing data

• -schemfile schemaFile or -f schemaFile Specify
the input (or output) schema from an external
file. Pig assumes that the file is located on
the default filesystem, but you may use an
explicity URL to unambigously specify the
location. (For example, if the data was on your
local file system in /stuff/schemafile.avsc, you
could specify "-f file:///stuff/schemafile.avsc"
to specify the location. If the data was on
HDFS under /yourdirectory/schemafile.avsc,
you could specify "-f hdfs:///yourdirectory/
schemafile.avsc"). Pig expects this to be a text
file, containing a valid avro schema.

• -examplefile exampleFile or -e exampleFile
Specify the input (or output) schema using
another Avro file as an example. Pig assumes
that the file is located on the default filesystem,
but you may use and explicity URL to specify
the location. Pig expects this to be an Avro data
file.

• -allowrecursive or -r Specify whether to allow
recursive schema definitions (the default is to
throw an exception if Pig encounters a recursive
schema). When reading objects with recursive
definitions, Pig will translate Avro records to
schema-less tuples; the Pig Schema for the
object may not match the data exactly.

• -doublecolons or -d Specify how to handle
Pig schemas that contain double-colons when
writing data in Avro format. (When you join

http://avro.apache.org/docs/current/spec.html

Built In Functions

Page 33Copyright © 2007 The Apache Software Foundation. All rights reserved.

two bags in Pig, Pig will automatically label
the fields in the output Tuples with names that
contain double-colons). If you select this option,
AvroStorage will translate names with double
colons into names with double underscores.

4.8.3 Usage

AvroStorage stores and loads data from Avro files. Often, you can load and store data using
AvroStorage without knowing much about the Avros serialization format. AvroStorage will
attempt to automatically translate a pig schema and pig data to avro data, or avro data to pig
data.

By default, when you use AvoStorage to load data, AvroStorage will use depth first search
to find a valid Avro file on the input path, then use the schema from that file to load the
data. When you use AvroStorage to store data, AvroStorage will attempt to translate the Pig
schema to an equivalent Avro schema. You can manually specify the schema by providing
an explicit schema in Pig, loading a schema from an external schema file, or explicitly telling
Pig to read the schema from a specific avro file.

To compress your output with AvroStorage, you need to use the correct Avro properties for
compression. For example, to enable compression using deflate level 5, you would specify

SET avro.output.codec 'deflate'
SET avro.mapred.deflate.level 5

Valid values for avro.output.codec include deflate, snappy, and null.

There are a few key differences between Avro and Pig data, and in some cases it helps to
understand the differences between the Avro and Pig data models. Before writing Pig data to
Avro (or creating Avro files to use in Pig), keep in mind that there might not be an equivalent
Avro Schema for every Pig Schema (and vice versa):

• Recursive schema definitions You cannot define schemas recursively in Pig, but you
can define schemas recursively in Avro.

• Allowed characters Pig schemas may sometimes contain characters like colons (":") that
are illegal in Avro names.

• Unions In Avro, you can define an object that may be one of several different types
(including complex types such as records). In Pig, you cannot.

• Enums Avro allows you to define enums to efficiently and abstractly represent
categorical variable, but Pig does not.

• Fixed Length Byte Arrays Avro allows you to define fixed length byte arrays, but Pig
does not.

• Nullable values In Pig, all types are nullable. In Avro, they are not.

Built In Functions

Page 34Copyright © 2007 The Apache Software Foundation. All rights reserved.

Here is how AvroStorage translates Pig values to Avro:

Original Pig Type Translated Avro Type

Integers int ["int","null"]

Longs long ["long,"null"]

Floats float ["float","null"]

Doubles double ["double","null"]

Strings chararray ["string","null"]

Bytes bytearray ["bytes","null"]

Booleans boolean ["boolean","null"]

Tuples tuple The Pig Tuple schema will be
translated to an union of and Avro
record with an equivalent schem
and null.

Bags of Tuples bag The Pig Tuple schema will be
translated to a union of an array of
records with an equivalent schema
and null.

Maps map The Pig Tuple schema will be
translated to a union of a map of
records with an equivalent schema
and null.

Here is how AvroStorage translates Avro values to Pig:

Original Avro Types Translated Pig Type

Integers ["int","null"] or "int" int

Longs ["long,"null"] or "long" long

Floats ["float","null"] or "float" float

Doubles ["double","null"] or "double" double

Strings ["string","null"] or "string" chararray

Enums Either an enum or a union of an
enum and null

chararray

Bytes ["bytes","null"] or "bytes" bytearray

Built In Functions

Page 35Copyright © 2007 The Apache Software Foundation. All rights reserved.

Fixes Either a fixed length byte array, or
a union of a fixed length array and
null

bytearray

Booleans ["boolean","null"] or "boolean" boolean

Tuples Either a record type, or a union or
a record and null

tuple

Bags of Tuples Either an array, or a union of an
array and null

bag

Maps Either a map, or a union of a map
and null

map

In many cases, AvroStorage will automatically translate your data correctly and you will not
need to provide any more information to AvroStorage. But sometimes, it may be convenient
to manually provide a schema to AvroStorge. See the example selection below for examples
on manually specifying a schema with AvroStorage.

4.8.4 Load Examples

Suppose that you were provided with a file of avro data (located in 'stuff') with the following
schema:

{"type" : "record",
 "name" : "stuff",
 "fields" : [
 {"name" : "label", "type" : "string"},
 {"name" : "value", "type" : "int"},
 {"name" : "marketingPlans", "type" : ["string", "bytearray", "null"]}
]
}

Additionally, suppose that you don't need the value of the field "marketingPlans." (That's a
good thing, because AvroStorage doesn't know how to translate that Avro schema to a Pig
schema). To load only the fieds "label" and "value" into Pig, you can manually specify the
schema passed to AvroStorage:

measurements = LOAD 'stuff' USING AvroStorage(
 '{"type":"record","name":"measurement","fields":[{"name":"label","type":"string"},
{"name":"value","type":"int"}]}'
);

4.8.5 Store Examples

Suppose that you are saving a bag called measurements with the schema:

Built In Functions

Page 36Copyright © 2007 The Apache Software Foundation. All rights reserved.

measurements:{measurement:(label:chararray,value:int)}

To store this bag into a file called "measurements", you can use a statement like:

STORE measurements INTO 'measurements' USING AvroStorage('measurement');

AvroStorage will translate this to the Avro schema

{"type":"record",
 "name":"measurement",
 "fields" : [
 {"name" : "label", "type" : ["string", "null"]},
 {"name" : "value", "type" : ["int", "null"]}
]
}

But suppose that you knew that the label and value fields would never be null. You could
define a more precise schema manually using a statement like:

STORE measurements INTO 'measurements' USING AvroStorage(
 '{"type":"record","name":"measurement","fields":[{"name":"label","type":"string"},
{"name":"value","type":"int"}]}'
);

4.9 TrevniStorage

Loads and stores data from Trevni files.

4.9.1 Syntax

TrevniStorage(['schema|record name'], ['options'])

Trevni is a column-oriented storage format that is part of the Apache Avro project. Trevni is
closely related to Avro.

Likewise, TrevniStorage is very closely related to AvroStorage, and shares the same
options as AvroStorage. See AvroStorage for a detailed description of the arguments for
TrevniStorage.

4.10 AccumuloStorage

Loads or stores data from an Accumulo table. The first element in a Tuple is equivalent to the
"row" from the Accumulo Key, while the columns in that row are can be grouped in various
static or wildcarded ways. Basic wildcarding functionality exists to group various columns

Built In Functions

Page 37Copyright © 2007 The Apache Software Foundation. All rights reserved.

families/qualifiers into a Map for LOADs, or serialize a Map into some group of column
families or qualifiers on STOREs.

4.10.1 Syntax

AccumuloStorage(['columns'[, 'options']])

4.10.2 Arguments

'columns' A comma-separated list of "columns" to read data
from to write data to. Each of these columns can be
considered one of three different types:

1. Literal
2. Column family prefix
3. Column qualifier prefix

Literal: this is the simplest specification which is a
colon-delimited string that maps to a column family
and column qualifier. This will read/write a simple
scalar from/to Accumulo.

Column family prefix: When reading data, this
will fetch data from Accumulo Key-Values in the
current row whose column family match the given
prefix. This will result in a Map being placed into
the Tuple. When writing data, a Map is also expected
at the given offset in the Tuple whose Keys will be
appended to the column family prefix, an empty
column qualifier is used, and the Map value will
be placed in the Accumulo Value. A valid column
family prefix is a literal asterisk (*) in which case the
Map Key will be equivalent to the Accumulo column
family.

Column qualifier prefix: Similar to the column
family prefix except it operates on the column
qualifier. On reads, Accumulo Key-Values in the
same row that match the given column family and
column qualifier prefix will be placed into a single
Map. On writes, the provided column family from
the column specification will be used, the Map key
will be appended to the column qualifier provided
in the specification, and the Map Value will be the
Accumulo Value.

When "columns" is not provided or is a blank String,
it is treated equivalently to "*". This is to say that
when a column specification string is not provided,
for reads, all columns in the given Accumulo row

Built In Functions

Page 38Copyright © 2007 The Apache Software Foundation. All rights reserved.

will be placed into a single Map (with the Map keys
being colon delimited to preserve the column family/
qualifier from Accumulo). For writes, the Map keys
will be placed into the column family and the column
qualifier will be empty.

'options' A string that contains space-separated options
("optionA valueA -optionB valueB -optionC
valueC")

The currently supported options are:

• (-c|--caster) LoadStoreCasterImpl An
implementation of a LoadStoreCaster to
use when serializing types into Accumulo,
usually AccumuloBinaryConverter
or UTF8StringConverter, defaults to
UTF8StorageConverter.

• (-auths|--authorizations) auth1,auth2...
A comma-separated list of Accumulo
authorizations to use when reading data
from Accumulo. Defaults to the empty set of
authorizations (none).

• (-s|--start) start_row The Accumulo row to begin
reading from, inclusive

• (-e|--end) end_row The Accumulo row to read
until, inclusive

• (-buff|--mutation-buffer-size) num_bytes The
number of bytes to buffer when writing data
to Accumulo. A higher value requires more
memory

• (-wt|--write-threads) num_threads The number of
threads used to write data to Accumulo.

• (-ml|--max-latency) milliseconds Maximum
time in milliseconds before data is flushed to
Accumulo.

• (-sep|--separator) str The separator character
used when parsing the column specification,
defaults to comma (,)

• (-iw|--ignore-whitespace) (true|false) Should
whitespace be stripped from the column
specification, defaults to true

4.10.3 Usage

AccumuloStorage has the functionality to store or fetch data from Accumulo. Its goal is to
provide a simple, widely applicable table schema compatible with Pig's API. Each Tuple
contains some subset of the columns stored within one row of the Accumulo table, which

Built In Functions

Page 39Copyright © 2007 The Apache Software Foundation. All rights reserved.

depends on the columns provided as an argument to the function. If '*' is provided, all
columns in the table will be returned. The second argument provides control over a variety of
options that can be used to change various properties.

When invoking Pig Scripts that use AccumuloStorage, it's important to ensure that Pig has
the Accumulo jars on its classpath. This is easily achieved using the ACCUMULO_HOME
environment variable.

PIG_CLASSPATH="$ACCUMULO_HOME/lib/*:$PIG_CLASSPATH" pig my_script.pig

4.10.4 Load Example

It is simple to fetch all columns from Airport codes that fall between Boston and San
Francisco that can be viewed with 'auth1' and/or 'auth2' Accumulo authorizations.

raw = LOAD 'accumulo://airports?
instance=accumulo&user=root&password=passwd&zookeepers=localhost'
 USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage(
 '*', '-a auth1,auth2 -s BOS -e SFO') AS
 (code:chararray, all_columns:map[]);

The datatypes of the columns are declared with the "AS" clause. In this example, the row
key, which is the unique airport code is assigned to the "code" variable while all of the other
columns are placed into the map. When there is a non-empty column qualifier, the key in
that map will have a colon which separates which portion of the key came from the column
family and which portion came from the column qualifier. The Accumulo value is placed in
the Map value.

Most times, it is not necessary, nor desired for performance reasons, to fetch all columns.

raw = LOAD 'accumulo://airports?
instance=accumulo&user=root&password=passwd&zookeepers=localhost'
 USING org.apache.pig.backend.hadoop.accumulo.AccumuloStorage(
 'name,building:num_terminals,carrier*,reviews:transportation*') AS
 (code:chararray name:bytearray carrier_map:map[] transportion_reviews_map:map[]);

An asterisk can be used when requesting columns to group a collection of columns into a
single Map instead of enumerating each column.

4.10.5 Store Example

Data can be easily stored into Accumulo.

A = LOAD 'flights.txt' AS (id:chararray, carrier_name:chararray, src_airport:chararray,
 dest_airport:chararray, tail_number:int);

Built In Functions

Page 40Copyright © 2007 The Apache Software Foundation. All rights reserved.

STORE A INTO 'accumulo://flights?
instance=accumulo&user=root&password=passwd&zookeepers=localhost' USING

 org.apache.pig.backend.hadoop.accumulo.AccumuloStorage('carrier_name,src_airport,dest_airport,tail_number');

Here, we read the file 'flights.txt' out of HDFS and store the results into the relation A. We
extract a unique ID for the flight, its source and destination and the tail number from the
given file. When STORE'ing back into Accumulo, we specify the column specifications (in
this case, just a column family). It is also important to note that four elements are provided as
columns because the first element in the Tuple is used as the row in Accumulo.

4.11 OrcStorage

Loads from or stores data to Orc file.

4.11.1 Syntax

OrcStorage(['options'])

4.11.2 Options

A string that contains space-separated options (‘-optionA valueA -optionB valueB -optionC ’). Current
options are only applicable with STORE operation and not for LOAD.

Currently supported options are:

• --stripeSize or -s Set the stripe size for the file. Default is 268435456(256 MB).
• --rowIndexStride or -r Set the distance between entries in the row index. Default is 10000.
• --bufferSize or -b Set the size of the memory buffers used for compressing and storing the stripe in

memory. Default is 262144 (256K).
• --blockPadding or -p Sets whether the HDFS blocks are padded to prevent stripes from straddling blocks.

Default is true.
• --compress or -c Sets the generic compression that is used to compress the data. Valid codecs are:

NONE, ZLIB, SNAPPY, LZO. Default is ZLIB.
• --version or -v Sets the version of the file that will be written

4.11.3 Example

OrcStorage as a StoreFunc.

A = LOAD 'student.txt' as (name:chararray, age:int, gpa:double);
store A into 'student.orc' using OrcStorage('-c SNAPPY'); -- store student.txt into
 data.orc with SNAPPY compression

OrcStorage as a LoadFunc.

A = LOAD 'student.orc' USING OrcStorage();
describe A; -- See the schema of student.orc

Built In Functions

Page 41Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = filter A by age > 25 and gpa < 3; -- filter condition will be pushed up to loader
dump B; -- dump the content of student.orc

4.11.4 Data types

Most Orc data type has one to one mapping to Pig data type. Several exceptions are:

Loader side:

• Orc STRING/CHAR/VARCHAR all map to Pig varchar
• Orc BYTE/BINARY all map to Pig bytearray
• Orc TIMESTAMP/DATE all maps to Pig datetime
• Orc DECIMAL maps to Pig bigdecimal

Storer side:

• Pig chararray maps to Orc STRING
• Pig datetime maps to Orc TIMESTAMP
• Pig bigdecimal/biginteger all map to Orc DECIMAL
• Pig bytearray maps to Orc BINARY

4.11.5 Predicate pushdown

If there is a filter statement right after OrcStorage, Pig will push the filter condition to the
loader. OrcStorage will prune file/stripe/row group which does not satisfy the condition
entirely. For the file/stripe/row group contains data that satisfies the filter condition,
OrcStorage will load the file/stripe/row group and Pig will evaluate the filter condition again
to remove additional data which does not satisfy the filter condition.

OrcStorage predicate pushdown currently support all primitive data types but none of the
complex data types. For example, map condition cannot push into OrcStorage:

A = LOAD 'student.orc' USING OrcStorage();
B = filter A by info#'age' > 25; -- map condition cannot push to OrcStorage
dump B;

Currently, the following expressions in filter condition are supported in OrcStorage predicate
pushdown: >, >=, <, <=, ==, !=, between, in, and, or, not. The missing expressions are: is
null, is not null, matches.

5 Math Functions

For general information about these functions, see the Java API Specification, Class Math.
Note the following:

• Pig function names are case sensitive and UPPER CASE.
• Pig may process results differently than as stated in the Java API Specification:

http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html

Built In Functions

Page 42Copyright © 2007 The Apache Software Foundation. All rights reserved.

• If the result value is null or empty, Pig returns null.
• If the result value is not a number (NaN), Pig returns null.
• If Pig is unable to process the expression, Pig returns an exception.

5.1 ABS

Returns the absolute value of an expression.

5.1.1 Syntax

ABS(expression)

5.1.2 Terms

expression Any expression whose result is type int, long, float,
or double.

5.1.3 Usage

Use the ABS function to return the absolute value of an expression. If the result is not
negative (x # 0), the result is returned. If the result is negative (x < 0), the negation of the
result is returned.

5.2 ACOS

Returns the arc cosine of an expression.

5.2.1 Syntax

ACOS(expression)

5.2.2 Terms

expression An expression whose result is type double.

5.2.3 Usage

Use the ACOS function to return the arc cosine of an expression.

5.3 ASIN

Returns the arc sine of an expression.

Built In Functions

Page 43Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.3.1 Syntax

ASIN(expression)

5.3.2 Terms

expression An expression whose result is type double.

5.3.3 Usage

Use the ASIN function to return the arc sine of an expression.

5.4 ATAN

Returns the arc tangent of an expression.

5.4.1 Syntax

ATAN(expression)

5.4.2 Terms

expression An expression whose result is type double.

5.4.3 Usage

Use the ATAN function to return the arc tangent of an expression.

5.5 CBRT

Returns the cube root of an expression.

5.5.1 Syntax

CBRT(expression)

5.5.2 Terms

expression An expression whose result is type double.

5.5.3 Usage

Use the CBRT function to return the cube root of an expression.

Built In Functions

Page 44Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.6 CEIL

Returns the value of an expression rounded up to the nearest integer.

5.6.1 Syntax

CEIL(expression)

5.6.2 Terms

expression An expression whose result is type double.

5.6.3 Usage

Use the CEIL function to return the value of an expression rounded up to the nearest integer.
This function never decreases the result value.

x CEIL(x)

4.6 5

3.5 4

2.4 3

1.0 1

-1.0 -1

-2.4 -2

-3.5 -3

-4.6 -4

5.7 COS

Returns the trigonometric cosine of an expression.

5.7.1 Syntax

COS(expression)

5.7.2 Terms

expression An expression (angle) whose result is type double.

Built In Functions

Page 45Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.7.3 Usage

Use the COS function to return the trigonometric cosine of an expression.

5.8 COSH

Returns the hyperbolic cosine of an expression.

5.8.1 Syntax

COSH(expression)

5.8.2 Terms

expression An expression whose result is type double.

5.8.3 Usage

Use the COSH function to return the hyperbolic cosine of an expression.

5.9 EXP

Returns Euler's number e raised to the power of x.

5.9.1 Syntax

EXP(expression)

5.9.2 Terms

expression An expression whose result is type double.

5.9.3 Usage

Use the EXP function to return the value of Euler's number e raised to the power of x (where
x is the result value of the expression).

5.10 FLOOR

Returns the value of an expression rounded down to the nearest integer.

5.10.1 Syntax

FLOOR(expression)

Built In Functions

Page 46Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.10.2 Terms

expression An expression whose result is type double.

5.10.3 Usage

Use the FLOOR function to return the value of an expression rounded down to the nearest
integer. This function never increases the result value.

x FLOOR(x)

4.6 4

3.5 3

2.4 2

1.0 1

-1.0 -1

-2.4 -3

-3.5 -4

-4.6 -5

5.11 LOG

Returns the natural logarithm (base e) of an expression.

5.11.1 Syntax

LOG(expression)

5.11.2 Terms

expression An expression whose result is type double.

5.11.3 Usage

Use the LOG function to return the natural logarithm (base e) of an expression.

5.12 LOG10

Returns the base 10 logarithm of an expression.

Built In Functions

Page 47Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.12.1 Syntax

LOG10(expression)

5.12.2 Terms

expression An expression whose result is type double.

5.12.3 Usage

Use the LOG10 function to return the base 10 logarithm of an expression.

5.13 RANDOM

Returns a pseudo random number.

5.13.1 Syntax

RANDOM()

5.13.2 Terms

N/A No terms.

5.13.3 Usage

Use the RANDOM function to return a pseudo random number (type double) greater than or
equal to 0.0 and less than 1.0.

5.14 ROUND

Returns the value of an expression rounded to an integer.

5.14.1 Syntax

ROUND(expression)

5.14.2 Terms

expression An expression whose result is type float or double.

5.14.3 Usage

Use the ROUND function to return the value of an expression rounded to an integer (if the
result type is float) or rounded to a long (if the result type is double).

Built In Functions

Page 48Copyright © 2007 The Apache Software Foundation. All rights reserved.

Values are rounded towards positive infinity: round(x) = floor(x + 0.5).

x ROUND(x)

4.6 5

3.5 4

2.4 2

1.0 1

-1.0 -1

-2.4 -2

-3.5 -3

-4.6 -5

5.15 ROUND_TO

Returns the value of an expression rounded to a fixed number of decimal digits.

5.15.1 Syntax

ROUND_TO(val, digits [, mode])

5.15.2 Terms

val An expression whose result is type float or double:
the value to round.

digits An expression whose result is type int: the number of
digits to preserve.

mode An optional int specifying the rounding mode,
according to the constants Java provides.

5.15.3 Usage

Use the ROUND function to return the value of an expression rounded to a fixed number of
digits. Given a float, its result is a float; given a double its result is a double.

The result is a multiple of the digits-th power of ten: 0 leads to no fractional digits; a
negative value zeros out correspondingly many places to the left of the decimal point.

https://en.wikipedia.org/wiki/Rounding#Tie-breaking
http://docs.oracle.com/javase/7/docs/api/constant-values.html#java.math

Built In Functions

Page 49Copyright © 2007 The Apache Software Foundation. All rights reserved.

When mode is omitted or has the value 6 (RoundingMode.HALF_EVEN), the result is
rounded towards the nearest neighbor, and ties are rounded to the nearest even digit. This
mode minimizes cumulative error and tends to preserve the average of a set of values.

When mode has the value 4 (RoundingMode.HALF_UP), the result is rounded towards
the nearest neighbor, and ties are rounded away from zero. This mode matches the behavior
of most SQL systems.

For other rounding modes, consult Java's documentation. There is no rounding mode that
matches Math.round's behavior (i.e. round towards positive infinity) -- blame Java, not
Pig.

val digits mode ROUND_TO(val, digits)

1234.1789 8 1234.1789

1234.1789 4 1234.1789

1234.1789 1 1234.2

1234.1789 0 1234.0

1234.1789 -1 1230.0

1234.1789 -3 1000.0

1234.1789 -4 0.0

3.25000001 1 3.3

3.25 1 3.2

-3.25 1 -3.2

3.15 1 3.2

-3.15 1 -3.2

3.25 1 4 3.3

-3.25 1 4 -3.3

3.5 0 4.0

-3.5 0 -4.0

2.5 0 2.0

-2.5 0 -2.0

3.5 0 4 4.0

http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html#HALF_EVEN
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html#HALF_UP
https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero
http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html

Built In Functions

Page 50Copyright © 2007 The Apache Software Foundation. All rights reserved.

val digits mode ROUND_TO(val, digits)

-3.5 0 4 -4.0

2.5 0 4 3.0

-2.5 0 4 -3.0

5.16 SIN

Returns the sine of an expression.

5.16.1 Syntax

SIN(expression)

5.16.2 Terms

expression An expression whose result is double.

5.16.3 Usage

Use the SIN function to return the sine of an expession.

5.17 SINH

Returns the hyperbolic sine of an expression.

5.17.1 Syntax

SINH(expression)

5.17.2 Terms

expression An expression whose result is double.

5.17.3 Usage

Use the SINH function to return the hyperbolic sine of an expression.

5.18 SQRT

Returns the positive square root of an expression.

Built In Functions

Page 51Copyright © 2007 The Apache Software Foundation. All rights reserved.

5.18.1 Syntax

SQRT(expression)

5.18.2 Terms

expression An expression whose result is double.

5.18.3 Usage

Use the SQRT function to return the positive square root of an expression.

5.19 TAN

Returns the trignometric tangent of an angle.

5.19.1 Syntax

TAN(expression)

5.19.2 Terms

expression An expression (angle) whose result is double.

5.19.3 Usage

Use the TAN function to return the trignometric tangent of an angle.

5.20 TANH

Returns the hyperbolic tangent of an expression.

5.20.1 Syntax

TANH(expression)

5.20.2 Terms

expression An expression whose result is double.

5.20.3 Usage

Use the TANH function to return the hyperbolic tangent of an expression.

Built In Functions

Page 52Copyright © 2007 The Apache Software Foundation. All rights reserved.

6 String Functions

For general information about these functions, see the Java API Specification, Class String.
Note the following:

• Pig function names are case sensitive and UPPER CASE.
• Pig string functions have an extra, first parameter: the string to which all the operations

are applied.
• Pig may process results differently than as stated in the Java API Specification. If any

of the input parameters are null or if an insufficient number of parameters are supplied,
NULL is returned.

6.1 ENDSWITH

Tests inputs to determine if the first argument ends with the string in the second.

6.1.1 Syntax

ENDSWITH(string, testAgainst)

6.1.2 Terms

string The string to be tested.

testAgainst The string to test against.

6.1.3 Usage

Use the ENDSWITH function to determine if the first argument ends with the string in the
second.

For example, ENDSWITH ('foobar', 'foo') will false, whereas ENDSWITH ('foobar', 'bar')
will return true.

6.2 EqualsIgnoreCase

Compares two Strings ignoring case considerations.

6.2.1 Syntax

EqualsIgnoreCase(string1, string2)

6.2.2 Terms

string1 The source string.

http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

Built In Functions

Page 53Copyright © 2007 The Apache Software Foundation. All rights reserved.

string2 The string to compare against.

6.2.3 Usage

Use the EqualsIgnoreCase function to determine if two string are equal ignoring case.

6.3 INDEXOF

Returns the index of the first occurrence of a character in a string, searching forward from a
start index.

6.3.1 Syntax

INDEXOF(string, 'character', startIndex)

6.3.2 Terms

string The string to be searched.

'character' The character being searched for, in quotes.

startIndex The index from which to begin the forward search.

The string index begins with zero (0).

6.3.3 Usage

Use the INDEXOF function to determine the index of the first occurrence of a character in a
string. The forward search for the character begins at the designated start index.

6.4 LAST_INDEX_OF

Returns the index of the last occurrence of a character in a string, searching backward from
the end of the string.

6.4.1 Syntax

LAST_INDEX_OF(string, 'character')

6.4.2 Terms

string The string to be searched.

'character' The character being searched for, in quotes.

Built In Functions

Page 54Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.4.3 Usage

Use the LAST_INDEX_OF function to determine the index of the last occurrence of a
character in a string. The backward search for the character begins at the end of the string.

6.5 LCFIRST

Converts the first character in a string to lower case.

6.5.1 Syntax

LCFIRST(expression)

6.5.2 Terms

expression An expression whose result type is chararray.

6.5.3 Usage

Use the LCFIRST function to convert only the first character in a string to lower case.

6.6 LOWER

Converts all characters in a string to lower case.

6.6.1 Syntax

LOWER(expression)

6.6.2 Terms

expression An expression whose result type is chararray.

6.6.3 Usage

Use the LOWER function to convert all characters in a string to lower case.

6.7 LTRIM

Returns a copy of a string with only leading white space removed.

6.7.1 Syntax

LTRIM(expression)

Built In Functions

Page 55Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.7.2 Terms

expression An expression whose result is chararray.

6.7.3 Usage

Use the LTRIM function to remove leading white space from a string.

6.8 REGEX_EXTRACT

Performs regular expression matching and extracts the matched group defined by an index
parameter.

6.8.1 Syntax

REGEX_EXTRACT (string, regex, index)

6.8.2 Terms

string The string in which to perform the match.

regex The regular expression.

index The index of the matched group to return.

6.8.3 Usage

Use the REGEX_EXTRACT function to perform regular expression matching and to extract
the matched group defined by the index parameter (where the index is a 1-based parameter.)
The function uses Java regular expression form.

The function returns a string that corresponds to the matched group in the position specified
by the index. If there is no matched expression at that position, NULL is returned.

6.8.4 Example

This example will return the string '192.168.1.5'.

REGEX_EXTRACT('192.168.1.5:8020', '(.*):(.*)', 1);

6.9 REGEX_EXTRACT_ALL

Performs regular expression matching and extracts all matched groups.

Built In Functions

Page 56Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.9.1 Syntax

REGEX_EXTRACT_ALL (string, regex)

6.9.2 Terms

string The string in which to perform the match.

regex The regular expression.

6.9.3 Usage

Use the REGEX_EXTRACT_ALL function to perform regular expression matching and to
extract all matched groups. The function uses Java regular expression form.

The function returns a tuple where each field represents a matched expression. If there is no
match, an empty tuple is returned.

6.9.4 Example

This example will return the tuple (192.168.1.5,8020).

REGEX_EXTRACT_ALL('192.168.1.5:8020', '(.*)\:(.*)');

6.10 REGEX_SEARCH

Performs regular expression matching and searches all matched characters in a string.

6.10.1 Syntax

REGEX_SEARCH(string, 'regExp');

6.10.2 Terms

string The string in which to perform the match.

'regExp' The regular expression to which the string is to be
matched, in quotes.

6.10.3 Usage

Use the REGEX_SEARCH function to perform regular expression matching and to find all
matched characters in a string.

The function returns tuples which are placed in a bag. Each tuple only contains one field
which represents a matched expression.

Built In Functions

Page 57Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.10.4 Example

This is example will return the bag {(=04),(=06),(=96)}.

REGEX_SEARCH('a=04 b=06 c=96 or more', '(=\\d+\\s)');

And this is example will return the bag {(04),(06),(96)}.

REGEX_SEARCH('a=04 b=06 c=96 or more', '=(\\d+)\\s');

6.11 REPLACE

Replaces existing characters in a string with new characters.

6.11.1 Syntax

REPLACE(string, 'regExp', 'newChar');

6.11.2 Terms

string The string to be updated.

'regExp' The regular expression to which the string is to be
matched, in quotes.

'newChar' The new characters replacing the existing characters,
in quotes.

6.11.3 Usage

Use the REPLACE function to replace existing characters in a string with new characters.

For example, to change "open source software" to "open source wiki" use this statement:
REPLACE(string,'software','wiki')

Note that the REPLACE function is internally implemented using
java.string.replaceAll(String regex, String replacement) where 'regExp' and 'newChar' are
passed as the 1st and 2nd argument respectively. If you want to replace special characters
such as '[' in the string literal, it is necessary to escape them in 'regExp' by prefixing them
with double backslashes (e.g. '\\[').

6.12 RTRIM

Returns a copy of a string with only trailing white space removed.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#replaceAll(java.lang.String, java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#replaceAll(java.lang.String, java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#bs

Built In Functions

Page 58Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.12.1 Syntax

RTRIM(expression)

6.12.2 Terms

expression An expression whose result is chararray.

6.12.3 Usage

Use the RTRIM function to remove trailing white space from a string.

6.13 SPRINTF

Formats a set of values according to a printf-style template, using the native Java Formatter
library.

6.13.1 Syntax

SPRINTF(format, [...vals])

6.13.2 Terms

format The printf-style string describing the template.

vals The values to place in the template. There must be a
tuple element for each formatting placeholder, and it
must have the correct type: int or long for integer
formats such as %d; float or double for decimal
formats such as %f; and long for date/time formats
such as %t.

6.13.3 Usage

Use the SPRINTF function to format a string according to a template. For example,
SPRINTF("part-%05d", 69) will return 'part-00069'.

String format specification arg1 arg2 arg3 SPRINTF(format,
arg1, arg2)

notes

'%8s|%8d|
%-8s'

1234567 1234567 'yay' ' 1234567|
1234567|yay
'

Format strings
with %s,
integers with
%d. Types
are converted
for you where
reasonable

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

Built In Functions

Page 59Copyright © 2007 The Apache Software Foundation. All rights reserved.

String format specification arg1 arg2 arg3 SPRINTF(format,
arg1, arg2)

notes

(here, int ->
string).

(null value) 1234567 1234567 'yay' (null value) Returns null
(no error or
warning) with
a null format
string.

'%8s|%8d|
%-8s'

1234567 (null value) 'yay' (null value) Returns null
(no error or
warning) if any
single argument
is null.

'%8.3f|%6x' 123.14159 665568 ' 123.142|
a27e0'

Format floats/
doubles
with %f,
hexadecimal
integers with
%x (there are
others besides
-- see the Java
docs)

'%,+10d|
%(06d'

1234567 -123 '+1,234,567|
(0123)'

Numerics
take a prefix
modifier: , for
locale-specific
thousands-
delimiting, 0 for
zero-padding;
+ to always
show a plus
sign for positive
numbers; space
to allow a
space preceding
positive
numbers; (
to indicate
negative
numbers with
parentheses

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

Built In Functions

Page 60Copyright © 2007 The Apache Software Foundation. All rights reserved.

String format specification arg1 arg2 arg3 SPRINTF(format,
arg1, arg2)

notes

(accountant-
style).

'%2$5d:
%3$6s
%1$3s %2$4x
(%<4X)'

'the' 48879 'wheres' '48879:
wheres
the beef
(BEEF)'

Refer to args
positionally
and as many
times as you
like using
%(pos)$....
Use %<...
to refer to the
previously-
specified arg.

'Launch
Time: %14d
%s'

ToMilliSeconds(CurrentTime())ToString(CurrentTime(),
'yyyy-MM-
dd HH:mm:ss
Z')

'Launch
Time:
1400164132000
2014-05-15
09:28:52
-0500'

Instead use
ToString to
format the date/
time portions
and SPRINTF
to layout the
results.

'%8s|%-8s' 1234567 MissingFormatArgumentException:
Format
specifier
'%-8s'

You must
supply
arguments for
all specifiers

'%8s' 1234567 'ignored' 'also' 1234567 It's OK to
supply too
many, though

Note: although the Java formatter (and thus this function) offers the %t specifier for date/
time elements, it's best avoided: it's cumbersome, the output and timezone handling may
differ from what you expect, and it doesn't accept datetime objects from pig. Instead, just
prepare dates usint the ToString UDF as shown.

6.14 STARTSWITH

Tests inputs to determine if the first argument starts with the string in the second.

6.14.1 Syntax

STARTSWITH(string, testAgainst)

Built In Functions

Page 61Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.14.2 Terms

string The string to be tested.

testAgainst The string to test against.

6.14.3 Usage

Use the STARTSWITH function to determine if the first argument starts with the string in
the second.

For example, STARTSWITH ('foobar', 'foo') will true, whereas STARTSWITH ('foobar',
'bar') will return false.

6.15 STRSPLIT

Splits a string around matches of a given regular expression.

6.15.1 Syntax

STRSPLIT(string, regex, limit)

6.15.2 Terms

string The string to be split.

regex The regular expression.

limit If the value is positive, the pattern (the compiled
representation of the regular expression) is applied
at most limit-1 times, therefore the value of the
argument means the maximum length of the result
tuple. The last element of the result tuple will contain
all input after the last match.

If the value is negative, no limit is applied for the
length of the result tuple.

If the value is zero, no limit is applied for the length
of the result tuple too, and trailing empty strings (if
any) will be removed.

6.15.3 Usage

Use the STRSPLIT function to split a string around matches of a given regular expression.

For example, given the string (open:source:software), STRSPLIT (string, ':',2) will return
((open,source:software)) and STRSPLIT (string, ':',3) will return ((open,source,software)).

Built In Functions

Page 62Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.16 STRSPLITTOBAG

Splits a string around matches of a given regular expression and returns a databag

6.16.1 Syntax

STRSPLITTOBAG(string, regex, limit)

6.16.2 Terms

string The string to be split.

regex The regular expression.

limit If the value is positive, the pattern (the compiled
representation of the regular expression) is applied
at most limit-1 times, therefore the value of the
argument means the maximum size of the result bag.
The last tuple of the result bag will contain all input
after the last match.

If the value is negative, no limit is applied to the size
of the result bag.

If the value is zero, no limit is applied to the size of
the result bag too, and trailing empty strings (if any)
will be removed.

6.16.3 Usage

Use the STRSPLITTOBAG function to split a string around matches of a given regular
expression.

For example, given the string (open:source:software), STRSPLITTOBAG (string, ':',2) will
return {(open),(source:software)} and STRSPLITTOBAG (string, ':',3) will return {(open),
(source),(software)}.

6.17 SUBSTRING

Returns a substring from a given string.

6.17.1 Syntax

SUBSTRING(string, startIndex, stopIndex)

6.17.2 Terms

string The string from which a substring will be extracted.

Built In Functions

Page 63Copyright © 2007 The Apache Software Foundation. All rights reserved.

startIndex The index (type integer) of the first character of the
substring.

The index of a string begins with zero (0).

stopIndex The index (type integer) of the character following
the last character of the substring.

6.17.3 Usage

Use the SUBSTRING function to return a substring from a given string.

Given a field named alpha whose value is ABCDEF, to return substring BCD use this
statement: SUBSTRING(alpha,1,4). Note that 1 is the index of B (the first character of the
substring) and 4 is the index of E (the character following the last character of the substring).

6.18 TRIM

Returns a copy of a string with leading and trailing white space removed.

6.18.1 Syntax

TRIM(expression)

6.18.2 Terms

expression An expression whose result is chararray.

6.18.3 Usage

Use the TRIM function to remove leading and trailing white space from a string.

6.19 UCFIRST

Returns a string with the first character converted to upper case.

6.19.1 Syntax

UCFIRST(expression)

6.19.2 Terms

expression An expression whose result type is chararray.

6.19.3 Usage

Use the UCFIRST function to convert only the first character in a string to upper case.

Built In Functions

Page 64Copyright © 2007 The Apache Software Foundation. All rights reserved.

6.20 UPPER

Returns a string converted to upper case.

6.20.1 Syntax

UPPER(expression)

6.20.2 Terms

expression An expression whose result type is chararray.

6.20.3 Usage

Use the UPPER function to convert all characters in a string to upper case.

6.21 UniqueID

Returns a unique id string for each record in the alias.

6.21.1 Usage

UniqueID generates a unique id for each records. The id takes form "taskindex-sequence"

7 Datetime Functions

For general information about datetime type operations, see the Java API Specification, Java
Date class, and JODA DateTime class. And for the information of ISO date and time formats,
please refer to Date and Time Formats.

7.1 AddDuration

Returns the result of a DateTime object plus a Duration object.

7.1.1 Syntax

AddDuration(datetime, duration)

7.1.2 Terms

datetime A datetime object.

duration The duration string in ISO 8601 format.

http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html
http://joda-time.sourceforge.net/apidocs/index.html
http://www.w3.org/TR/NOTE-datetime
http://en.wikipedia.org/wiki/ISO_8601#Durations
http://en.wikipedia.org/wiki/ISO_8601#Durations

Built In Functions

Page 65Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.1.3 Usage

Use the AddDuration function to created a new datetime object by add some duration to a
given datetime object.

7.2 CurrentTime

Returns the DateTime object of the current time.

7.2.1 Syntax

CurrentTime()

7.2.2 Usage

Use the CurrentTime function to generate a datetime object of current timestamp with
millisecond accuracy.

7.3 DaysBetween

Returns the number of days between two DateTime objects.

7.3.1 Syntax

DaysBetween(datetime1, datetime2)

7.3.2 Terms

datetime1 A datetime object.

datetime2 Another datetime object.

7.3.3 Usage

Use the DaysBetween function to get the number of days between the two given datetime
objects.

7.4 GetDay

Returns the day of a month from a DateTime object.

7.4.1 Syntax

GetDay(datetime)

Built In Functions

Page 66Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.4.2 Terms

datetime A datetime object.

7.4.3 Usage

Use the GetDay function to extract the day of a month from the given datetime object.

7.5 GetHour

Returns the hour of a day from a DateTime object.

7.5.1 Syntax

GetHour(datetime)

7.5.2 Terms

datetime A datetime object.

7.5.3 Usage

Use the GetHour function to extract the hour of a day from the given datetime object.

7.6 GetMilliSecond

Returns the millisecond of a second from a DateTime object.

7.6.1 Syntax

GetMilliSecond(datetime)

7.6.2 Terms

datetime A datetime object.

7.6.3 Usage

Use the GetMilliSecond function to extract the millsecond of a second from the given
datetime object.

7.7 GetMinute

Returns the minute of a hour from a DateTime object.

Built In Functions

Page 67Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.7.1 Syntax

GetMinute(datetime)

7.7.2 Terms

datetime A datetime object.

7.7.3 Usage

Use the GetMinute function to extract the minute of a hour from the given datetime object.

7.8 GetMonth

Returns the month of a year from a DateTime object.

7.8.1 Syntax

GetMonth(datetime)

7.8.2 Terms

datetime A datetime object.

7.8.3 Usage

Use the GetMonth function to extract the month of a year from the given datetime object.

7.9 GetSecond

Returns the second of a minute from a DateTime object.

7.9.1 Syntax

GetSecond(datetime)

7.9.2 Terms

datetime A datetime object.

7.9.3 Usage

Use the GetSecond function to extract the second of a minute from the given datetime object.

Built In Functions

Page 68Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.10 GetWeek

Returns the week of a week year from a DateTime object.

7.10.1 Syntax

GetWeek(datetime)

7.10.2 Terms

datetime A datetime object.

7.10.3 Usage

Use the GetWeek function to extract the week of a week year from the given datetime object.
Note that week year may be different from year.

7.11 GetWeekYear

Returns the week year from a DateTime object.

7.11.1 Syntax

GetWeekYear(datetime)

7.11.2 Terms

datetime A datetime object.

7.11.3 Usage

Use the GetWeekYear function to extract the week year from the given datetime object. Note
that week year may be different from year.

7.12 GetYear

Returns the year from a DateTime object.

7.12.1 Syntax

GetYear(datetime)

7.12.2 Terms

datetime A datetime object.

Built In Functions

Page 69Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.12.3 Usage

Use the GetYear function to extract the year from the given datetime object.

7.13 HoursBetween

Returns the number of hours between two DateTime objects.

7.13.1 Syntax

HoursBetween(datetime1, datetime2)

7.13.2 Terms

datetime1 A datetime object.

datetime2 Another datetime object.

7.13.3 Usage

Use the HoursBetween function to get the number of hours between the two given datetime
objects.

7.14 MilliSecondsBetween

Returns the number of milliseconds between two DateTime objects.

7.14.1 Syntax

MilliSecondsBetween(datetime1, datetime2)

7.14.2 Terms

datetime1 A datetime object.

datetime2 Another datetime object.

7.14.3 Usage

Use the MilliSecondsBetween function to get the number of millseconds between the two
given datetime objects.

7.15 MinutesBetween

Returns the number of minutes between two DateTime objects.

Built In Functions

Page 70Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.15.1 Syntax

MinutesBetween(datetime1, datetime2)

7.15.2 Terms

datetime1 A datetime object.

datetime2 Another datetime object.

7.15.3 Usage

Use the MinutsBetween function to get the number of minutes between the two given
datetime objects.

7.16 MonthsBetween

Returns the number of months between two DateTime objects.

7.16.1 Syntax

MonthsBetween(datetime1, datetime2)

7.16.2 Terms

datetime1 A datetime object.

datetime2 Another datetime object.

7.16.3 Usage

Use the MonthsBetween function to get the number of months between the two given
datetime objects.

7.17 SecondsBetween

Returns the number of seconds between two DateTime objects.

7.17.1 Syntax

SecondsBetween(datetime1, datetime2)

7.17.2 Terms

datetime1 A datetime object.

Built In Functions

Page 71Copyright © 2007 The Apache Software Foundation. All rights reserved.

datetime2 Another datetime object.

7.17.3 Usage

Use the SecondsBetween function to get the number of seconds between the two given
datetime objects.

7.18 SubtractDuration

Returns the result of a DateTime object minus a Duration object.

7.18.1 Syntax

SubtractDuration(datetime, duration)

7.18.2 Terms

datetime A datetime object.

duration The duration string in ISO 8601 format.

7.18.3 Usage

Use the AddDuration function to created a new datetime object by add some duration to a
given datetime object.

7.19 ToDate

Returns a DateTime object according to parameters.

7.19.1 Syntax

ToDate(milliseconds)

ToDate(iosstring)

ToDate(userstring, format)

ToDate(userstring, format, timezone)

7.19.2 Terms

millseconds The offset from 1970-01-01T00:00:00.000Z in
terms of the number milliseconds (either positive or
negative).

isostring The datetime string in the ISO 8601 format.

http://en.wikipedia.org/wiki/ISO_8601#Durations
http://en.wikipedia.org/wiki/ISO_8601#Durations
http://www.w3.org/TR/NOTE-datetime

Built In Functions

Page 72Copyright © 2007 The Apache Software Foundation. All rights reserved.

userstring The datetime string in the user defined format.

format The date time format pattern string (see Java
SimpleDateFormat class).

timezone The timezone string. Either the UTC offset and the
location based format can be used as a parameter,
while internally the timezone will be converted to the
UTC offset format.

Please see the Joda-Time doc for available timezone
IDs.

7.19.3 Usage

Use the ToDate function to generate a DateTime object. Note that if the timezone is not
specified with the ISO datetime string or by the timezone parameter, the default timezone
will be used.

7.20 ToMilliSeconds

Returns the number of milliseconds elapsed since January 1, 1970, 00:00:00.000 GMT for a
DateTime object.

7.20.1 Syntax

ToMilliSeconds(datetime)

7.20.2 Terms

datetime A datetime object.

7.20.3 Usage

Use the ToMilliSeconds function to convert the DateTime to the number of milliseconds that
have passed since January 1, 1970 00:00:00.000 GMT.

7.21 ToString

ToString converts the DateTime object to the ISO or the customized string.

7.21.1 Syntax

ToString(datetime [, format string])

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://joda-time.sourceforge.net/timezones.html

Built In Functions

Page 73Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.21.2 Terms

datetime A datetime object.

format string The date time format pattern string (see Java
SimpleDateFormat class).

7.21.3 Usage

Use the ToString function to convert the DateTime to the customized string.

7.22 ToUnixTime

Returns the Unix Time as long for a DateTime object. UnixTime is the number of seconds
elapsed since January 1, 1970, 00:00:00.000 GMT.

7.22.1 Syntax

ToUnixTime(datetime)

7.22.2 Terms

datetime A datetime object.

7.22.3 Usage

Use the ToUnixTime function to convert the DateTime to Unix Time.

7.23 WeeksBetween

Returns the number of weeks between two DateTime objects.

7.23.1 Syntax

WeeksBetween(datetime1, datetime2)

7.23.2 Terms

datetime1 A datetime object.

datetime2 Another datetime object.

7.23.3 Usage

Use the WeeksBetween function to get the number of weeks between the two given datetime
objects.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Built In Functions

Page 74Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.24 YearsBetween

Returns the number of years between two DateTime objects.

7.24.1 Syntax

YearsBetween(datetime1, datetime2)

7.24.2 Terms

datetime1 A datetime object.

datetime2 Another datetime object.

7.24.3 Usage

Use the YearsBetween function to get the number of years between the two given datetime
objects.

8 Tuple, Bag, Map Functions

8.1 TOTUPLE

Converts one or more expressions to type tuple.

8.1.1 Syntax

TOTUPLE(expression [, expression ...])

8.1.2 Terms

expression An expression of any datatype.

8.1.3 Usage

Use the TOTUPLE function to convert one or more expressions to a tuple.

See also: Tuple data type and Type Construction Operators

8.1.4 Example

In this example, fields f1, f2 and f3 are converted to a tuple.

a = LOAD 'student' AS (f1:chararray, f2:int, f3:float);
DUMP a;

(John,18,4.0)

basic.html#tuple
basic.html#type-construction

Built In Functions

Page 75Copyright © 2007 The Apache Software Foundation. All rights reserved.

(Mary,19,3.8)
(Bill,20,3.9)
(Joe,18,3.8)

b = FOREACH a GENERATE TOTUPLE(f1,f2,f3);
DUMP b;

((John,18,4.0))
((Mary,19,3.8))
((Bill,20,3.9))
((Joe,18,3.8))

8.2 TOBAG

Converts one or more expressions to type bag.

8.2.1 Syntax

TOBAG(expression [, expression ...])

8.2.2 Terms

expression An expression with any data type.

8.2.3 Usage

Use the TOBAG function to convert one or more expressions to individual tuples which are
then placed in a bag.

See also: Bag data type and Type Construction Operators

8.2.4 Example

In this example, fields f1 and f3 are converted to tuples that are then placed in a bag.

a = LOAD 'student' AS (f1:chararray, f2:int, f3:float);
DUMP a;

(John,18,4.0)
(Mary,19,3.8)
(Bill,20,3.9)
(Joe,18,3.8)

b = FOREACH a GENERATE TOBAG(f1,f3);
DUMP b;

({(John),(4.0)})
({(Mary),(3.8)})
({(Bill),(3.9)})
({(Joe),(3.8)})

basic.html#bag
basic.html#type-construction

Built In Functions

Page 76Copyright © 2007 The Apache Software Foundation. All rights reserved.

8.3 TOMAP

Converts key/value expression pairs into a map.

8.3.1 Syntax

TOMAP(key-expression, value-expression [, key-expression, value-expression ...])

8.3.2 Terms

key-expression An expression of type chararray.

value-expression An expression of any type supported by a map.

8.3.3 Usage

Use the TOMAP function to convert pairs of expressions into a map. Note the following:

• You must supply an even number of expressions as parameters
• The elements must comply with map type rules:

• Every odd element (key-expression) must be a chararray since only chararrays can be
keys into the map

• Every even element (value-expression) can be of any type supported by a map.

See also: Map data type and Type Construction Operators

8.3.4 Example

In this example, student names (type chararray) and student GPAs (type float) are used to
create three maps.

A = load 'students' as (name:chararray, age:int, gpa:float);
B = foreach A generate TOMAP(name, gpa);
store B into 'results';

Input (students)
joe smith 20 3.5
amy chen 22 3.2
leo allen 18 2.1

Output (results)
[joe smith#3.5]
[amy chen#3.2]
[leo allen#2.1]

8.4 TOP

Returns the top-n tuples from a bag of tuples.

basic.html#map
basic.html#type-construction

Built In Functions

Page 77Copyright © 2007 The Apache Software Foundation. All rights reserved.

8.4.1 Syntax

TOP(topN,column,relation)

8.4.2 Terms

topN The number of top tuples to return (type integer).

column The tuple column whose values are being compared,
note 0 denotes the first column.

relation The relation (bag of tuples) containing the tuple
column.

8.4.3 Usage

TOP function returns a bag containing top N tuples from the input bag where N is controlled
by the first parameter to the function. The tuple comparison is performed based on a single
column from the tuple. The column position is determined by the second parameter to the
function. The function assumes that all tuples in the bag contain an element of the same type
in the compared column.

By default, TOP function uses descending order. But it can be configured via DEFINE
statement.

DEFINE asc TOP('ASC'); -- ascending order
DEFINE desc TOP('DESC'); -- descending order

8.4.4 Example

In this example the top 10 occurrences are returned.

DEFINE asc TOP('ASC'); -- ascending order
DEFINE desc TOP('DESC'); -- descending order

A = LOAD 'data' as (first: chararray, second: chararray);
B = GROUP A BY (first, second);
C = FOREACH B generate FLATTEN(group), COUNT(A) as count;
D = GROUP C BY first; -- again group by first
topResults = FOREACH D {
 result = asc(10, 1, C); -- and retain top 10 (in ascending order) occurrences of
 'second' in first
 GENERATE FLATTEN(result);
}

bottomResults = FOREACH D {
 result = desc(10, 1, C); -- and retain top 10 (in descending order) occurrences of
 'second' in first
 GENERATE FLATTEN(result);

Built In Functions

Page 78Copyright © 2007 The Apache Software Foundation. All rights reserved.

}

9 Hive UDF

Pig invokes all types of Hive UDF, including UDF, GenericUDF, UDAF, GenericUDAF
and GenericUDTF. Depending on the Hive UDF you want to use, you need to declare it
in Pig with HiveUDF(handles UDF and GenericUDF), HiveUDAF(handles UDAF and
GenericUDAF), HiveUDTF(handles GenericUDTF).

9.1 Syntax

HiveUDF, HiveUDAF, HiveUDTF share the same syntax.

HiveUDF(name[, constant parameters])

9.2 Terms

name Hive UDF name. This can be a fully qualified class
name of the Hive UDF/UDTF/UDAF class, or a
registered short name in Hive FunctionRegistry (most
Hive builtin UDF does that)

constant parameters Optional tuple representing constant parameters of
a Hive UDF/UDTF/UDAF. If Hive UDF requires
a constant parameter, there is no other way Pig can
pass that information to Hive, since Pig schema does
not carry the information whether a parameter is
constant or not. Null item in the tuple means this field
is not a constant. Non-null item represents a constant
field. Data type for the item is determined by Pig
contant parser.

9.3 Example

HiveUDF

define sin HiveUDF('sin');
A = LOAD 'student' as (name:chararray, age:int, gpa:double);
B = foreach A generate sin(gpa);

HiveUDTF

define explode HiveUDTF('explode');
A = load 'mydata' as (a0:{(b0:chararray)});
B = foreach A generate flatten(explode(a0));

Built In Functions

Page 79Copyright © 2007 The Apache Software Foundation. All rights reserved.

HiveUDAF

define avg HiveUDAF('avg');
A = LOAD 'student' as (name:chararray, age:int, gpa:double);
B = group A by name;
C = foreach B generate group, avg(A.age);

HiveUDAF with constant parameter

define in_file HiveUDF('in_file', '(null, "names.txt")');
A = load 'student' as (name:chararray, age:long, gpa:double);
B = foreach A generate in_file(name, 'names.txt');

In this example, we pass (null, "names.txt") to the construct of UDF in_file, meaning the
first parameter is regular, the second parameter is a constant. names.txt can be double
quoted (unlike other Pig syntax), or quoted in \'. Note we need to pass 'names.txt' again in
line 3. This looks stupid but we need to do this to fill the semantic gap between Pig and
Hive. We need to pass the constant in the data pipeline in line 3, which is similar Pig UDF.
Initialization code in Hive UDF takes ObjectInspector, which capture the data type and
whether or not the parameter is a constant. However, initialization code in Pig takes schema,
which only capture the former. We need to use additional mechanism (construct parameter)
to convey the later.

Note: A few Hive 0.14 UDF contains bug which affects Pig and are fixed in Hive 1.0. Here is
a list: compute_stats, context_ngrams, count, ewah_bitmap, histogram_numeric, collect_list,
collect_set, ngrams, case, in, named_struct, stack, percentile_approx.

	Table of contents
	1 Introduction
	2 Dynamic Invokers
	3 Eval Functions
	3.1 AVG
	3.1.1 Syntax
	3.1.2 Terms
	3.1.3 Usage
	3.1.4 Example
	3.1.5 Types Tables

	3.2 BagToString
	3.2.1 Syntax
	3.2.2 Terms
	3.2.3 Usage
	3.2.4 Examples

	3.3 BagToTuple
	3.3.1 Syntax
	3.3.2 Terms
	3.3.3 Usage
	3.3.4 Examples

	3.4 Bloom
	3.4.1 Syntax
	3.4.2 Terms
	3.4.3 Usage
	3.4.4 Examples

	3.5 CONCAT
	3.5.1 Syntax
	3.5.2 Terms
	3.5.3 Usage
	3.5.4 Example

	3.6 COUNT
	3.6.1 Syntax
	3.6.2 Terms
	3.6.3 Usage
	3.6.4 Example
	3.6.5 Types Tables

	3.7 COUNT_STAR
	3.7.1 Syntax
	3.7.2 Terms
	3.7.3 Usage
	3.7.4 Example

	3.8 DIFF
	3.8.1 Syntax
	3.8.2 Terms
	3.8.3 Usage
	3.8.4 Example

	3.9 IsEmpty
	3.9.1 Syntax
	3.9.2 Terms
	3.9.3 Usage
	3.9.4 Example

	3.10 MAX
	3.10.1 Syntax
	3.10.2 Terms
	3.10.3 Usage
	3.10.4 Example
	3.10.5 Types Tables

	3.11 MIN
	3.11.1 Syntax
	3.11.2 Terms
	3.11.3 Usage
	3.11.4 Example
	3.11.5 Types Tables

	3.12 PluckTuple
	3.12.1 Syntax
	3.12.2 Terms
	3.12.3 Usage

	3.13 SIZE
	3.13.1 Syntax
	3.13.2 Terms
	3.13.3 Usage
	3.13.4 Example
	3.13.5 Types Tables

	3.14 SUBTRACT
	3.14.1 Syntax
	3.14.2 Terms
	3.14.3 Usage
	3.14.4 Example

	3.15 SUM
	3.15.1 Syntax
	3.15.2 Terms
	3.15.3 Usage
	3.15.4 Example
	3.15.5 Types Tables

	3.16 IN
	3.16.1 Syntax
	3.16.2 Terms
	3.16.3 Usage
	3.16.4 Example

	3.17 TOKENIZE
	3.17.1 Syntax
	3.17.2 Terms
	3.17.3 Usage
	3.17.4 Example

	4 Load/Store Functions
	4.1 Handling Compression
	4.2 BinStorage
	4.2.1 Syntax
	4.2.2 Terms
	4.2.3 Usage
	4.2.4 Examples

	4.3 JsonLoader, JsonStorage
	4.3.1 Syntax
	4.3.2 Terms
	4.3.3 Usage
	4.3.4 Examples

	4.4 PigDump
	4.4.1 Syntax
	4.4.2 Terms
	4.4.3 Usage
	4.4.4 Example

	4.5 PigStorage
	4.5.1 Syntax
	4.5.2 Terms
	4.5.3 Usage
	4.5.4 Examples

	4.6 TextLoader
	4.6.1 Syntax
	4.6.2 Terms
	4.6.3 Usage
	4.6.4 Example

	4.7 HBaseStorage
	4.7.1 Syntax
	4.7.2 Terms
	4.7.3 Usage
	4.7.4 Load Example
	4.7.5 Store Example

	4.8 AvroStorage
	4.8.1 Syntax
	4.8.2 Terms
	4.8.3 Usage
	4.8.4 Load Examples
	4.8.5 Store Examples

	4.9 TrevniStorage
	4.9.1 Syntax

	4.10 AccumuloStorage
	4.10.1 Syntax
	4.10.2 Arguments
	4.10.3 Usage
	4.10.4 Load Example
	4.10.5 Store Example

	4.11 OrcStorage
	4.11.1 Syntax
	4.11.2 Options
	4.11.3 Example
	4.11.4 Data types
	4.11.5 Predicate pushdown

	5 Math Functions
	5.1 ABS
	5.1.1 Syntax
	5.1.2 Terms
	5.1.3 Usage

	5.2 ACOS
	5.2.1 Syntax
	5.2.2 Terms
	5.2.3 Usage

	5.3 ASIN
	5.3.1 Syntax
	5.3.2 Terms
	5.3.3 Usage

	5.4 ATAN
	5.4.1 Syntax
	5.4.2 Terms
	5.4.3 Usage

	5.5 CBRT
	5.5.1 Syntax
	5.5.2 Terms
	5.5.3 Usage

	5.6 CEIL
	5.6.1 Syntax
	5.6.2 Terms
	5.6.3 Usage

	5.7 COS
	5.7.1 Syntax
	5.7.2 Terms
	5.7.3 Usage

	5.8 COSH
	5.8.1 Syntax
	5.8.2 Terms
	5.8.3 Usage

	5.9 EXP
	5.9.1 Syntax
	5.9.2 Terms
	5.9.3 Usage

	5.10 FLOOR
	5.10.1 Syntax
	5.10.2 Terms
	5.10.3 Usage

	5.11 LOG
	5.11.1 Syntax
	5.11.2 Terms
	5.11.3 Usage

	5.12 LOG10
	5.12.1 Syntax
	5.12.2 Terms
	5.12.3 Usage

	5.13 RANDOM
	5.13.1 Syntax
	5.13.2 Terms
	5.13.3 Usage

	5.14 ROUND
	5.14.1 Syntax
	5.14.2 Terms
	5.14.3 Usage

	5.15 ROUND_TO
	5.15.1 Syntax
	5.15.2 Terms
	5.15.3 Usage

	5.16 SIN
	5.16.1 Syntax
	5.16.2 Terms
	5.16.3 Usage

	5.17 SINH
	5.17.1 Syntax
	5.17.2 Terms
	5.17.3 Usage

	5.18 SQRT
	5.18.1 Syntax
	5.18.2 Terms
	5.18.3 Usage

	5.19 TAN
	5.19.1 Syntax
	5.19.2 Terms
	5.19.3 Usage

	5.20 TANH
	5.20.1 Syntax
	5.20.2 Terms
	5.20.3 Usage

	6 String Functions
	6.1 ENDSWITH
	6.1.1 Syntax
	6.1.2 Terms
	6.1.3 Usage

	6.2 EqualsIgnoreCase
	6.2.1 Syntax
	6.2.2 Terms
	6.2.3 Usage

	6.3 INDEXOF
	6.3.1 Syntax
	6.3.2 Terms
	6.3.3 Usage

	6.4 LAST_INDEX_OF
	6.4.1 Syntax
	6.4.2 Terms
	6.4.3 Usage

	6.5 LCFIRST
	6.5.1 Syntax
	6.5.2 Terms
	6.5.3 Usage

	6.6 LOWER
	6.6.1 Syntax
	6.6.2 Terms
	6.6.3 Usage

	6.7 LTRIM
	6.7.1 Syntax
	6.7.2 Terms
	6.7.3 Usage

	6.8 REGEX_EXTRACT
	6.8.1 Syntax
	6.8.2 Terms
	6.8.3 Usage
	6.8.4 Example

	6.9 REGEX_EXTRACT_ALL
	6.9.1 Syntax
	6.9.2 Terms
	6.9.3 Usage
	6.9.4 Example

	6.10 REGEX_SEARCH
	6.10.1 Syntax
	6.10.2 Terms
	6.10.3 Usage
	6.10.4 Example

	6.11 REPLACE
	6.11.1 Syntax
	6.11.2 Terms
	6.11.3 Usage

	6.12 RTRIM
	6.12.1 Syntax
	6.12.2 Terms
	6.12.3 Usage

	6.13 SPRINTF
	6.13.1 Syntax
	6.13.2 Terms
	6.13.3 Usage

	6.14 STARTSWITH
	6.14.1 Syntax
	6.14.2 Terms
	6.14.3 Usage

	6.15 STRSPLIT
	6.15.1 Syntax
	6.15.2 Terms
	6.15.3 Usage

	6.16 STRSPLITTOBAG
	6.16.1 Syntax
	6.16.2 Terms
	6.16.3 Usage

	6.17 SUBSTRING
	6.17.1 Syntax
	6.17.2 Terms
	6.17.3 Usage

	6.18 TRIM
	6.18.1 Syntax
	6.18.2 Terms
	6.18.3 Usage

	6.19 UCFIRST
	6.19.1 Syntax
	6.19.2 Terms
	6.19.3 Usage

	6.20 UPPER
	6.20.1 Syntax
	6.20.2 Terms
	6.20.3 Usage

	6.21 UniqueID
	6.21.1 Usage

	7 Datetime Functions
	7.1 AddDuration
	7.1.1 Syntax
	7.1.2 Terms
	7.1.3 Usage

	7.2 CurrentTime
	7.2.1 Syntax
	7.2.2 Usage

	7.3 DaysBetween
	7.3.1 Syntax
	7.3.2 Terms
	7.3.3 Usage

	7.4 GetDay
	7.4.1 Syntax
	7.4.2 Terms
	7.4.3 Usage

	7.5 GetHour
	7.5.1 Syntax
	7.5.2 Terms
	7.5.3 Usage

	7.6 GetMilliSecond
	7.6.1 Syntax
	7.6.2 Terms
	7.6.3 Usage

	7.7 GetMinute
	7.7.1 Syntax
	7.7.2 Terms
	7.7.3 Usage

	7.8 GetMonth
	7.8.1 Syntax
	7.8.2 Terms
	7.8.3 Usage

	7.9 GetSecond
	7.9.1 Syntax
	7.9.2 Terms
	7.9.3 Usage

	7.10 GetWeek
	7.10.1 Syntax
	7.10.2 Terms
	7.10.3 Usage

	7.11 GetWeekYear
	7.11.1 Syntax
	7.11.2 Terms
	7.11.3 Usage

	7.12 GetYear
	7.12.1 Syntax
	7.12.2 Terms
	7.12.3 Usage

	7.13 HoursBetween
	7.13.1 Syntax
	7.13.2 Terms
	7.13.3 Usage

	7.14 MilliSecondsBetween
	7.14.1 Syntax
	7.14.2 Terms
	7.14.3 Usage

	7.15 MinutesBetween
	7.15.1 Syntax
	7.15.2 Terms
	7.15.3 Usage

	7.16 MonthsBetween
	7.16.1 Syntax
	7.16.2 Terms
	7.16.3 Usage

	7.17 SecondsBetween
	7.17.1 Syntax
	7.17.2 Terms
	7.17.3 Usage

	7.18 SubtractDuration
	7.18.1 Syntax
	7.18.2 Terms
	7.18.3 Usage

	7.19 ToDate
	7.19.1 Syntax
	7.19.2 Terms
	7.19.3 Usage

	7.20 ToMilliSeconds
	7.20.1 Syntax
	7.20.2 Terms
	7.20.3 Usage

	7.21 ToString
	7.21.1 Syntax
	7.21.2 Terms
	7.21.3 Usage

	7.22 ToUnixTime
	7.22.1 Syntax
	7.22.2 Terms
	7.22.3 Usage

	7.23 WeeksBetween
	7.23.1 Syntax
	7.23.2 Terms
	7.23.3 Usage

	7.24 YearsBetween
	7.24.1 Syntax
	7.24.2 Terms
	7.24.3 Usage

	8 Tuple, Bag, Map Functions
	8.1 TOTUPLE
	8.1.1 Syntax
	8.1.2 Terms
	8.1.3 Usage
	8.1.4 Example

	8.2 TOBAG
	8.2.1 Syntax
	8.2.2 Terms
	8.2.3 Usage
	8.2.4 Example

	8.3 TOMAP
	8.3.1 Syntax
	8.3.2 Terms
	8.3.3 Usage
	8.3.4 Example

	8.4 TOP
	8.4.1 Syntax
	8.4.2 Terms
	8.4.3 Usage
	8.4.4 Example

	9 Hive UDF
	9.1 Syntax
	9.2 Terms
	9.3 Example

