Control Structures

Table of contents

1 Embedded Pig - Python, JavaScript and GroOVY..........ccccceeeeeeieenesieesee e e s esee e 2
2 Embedded Pig - JAVAcccceoiiecece et 16
B PG IVIBEIOS.....c ettt bbb bt h ettt e b h e b b ne e e e 18

A PalramMEEr SUDSTULION. ... eeenennmemnnnmemnmnnn 23

Control Structures

1 Embedded Pig - Python, JavaScript and Groovy

To enable control flow, you can embed Pig Latin statements and Pig commandsin the
Python, JavaScript and Groovy scripting languages using a JDBC-like compile, bind, run
model. For Python, make sure the Jython jar isincluded in your class path. For JavaScript,
make sure the Rhino jar isincluded in your classpath. For Groovy, make sure the groovy-all
jar isincluded in your classpath.

Note that host languages and the languages of UDFs (included as part of the embedded Pig)
are completely orthogonal. For example, a Pig Latin statement that registers a Python UDF
may be embedded in Python, JavaScript, or Java. The exception to thisrule is"combined"
scripts — here the languages must match (see the Advanced Topics for Python, Advanced
Topics for JavaScript and Advanced Topics for Groovy).

1.1 Invocation Basics

Embedded Pig is supported in batch mode only, not interactive mode. Y ou can request that
embedded Pig be used by adding the - - embedded option to the Pig command line. If this
option is passed as an argument, that argument will refer to the language Pig is embedded
in, either Python, JavaScript or Groovy. If no argument is specified, it is taken to refer to the
reference implementation for Python.

Python

Pig will look for the#! / usr/ bi n/ pyt hon linein the script.

udf.html#jython-advanced
udf.html#js-advanced
udf.html#js-advanced
udf.html#groovy-advanced

Control Structures

JavaScript

Pig will look for the *.js extension in the script.

Pig will look for the *.groovy extension in the script.

I nvocation Process
Y ou invoke Pig in the host scripting language through an embedded Pig object.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 3

Control Structures

Compile: Compileisastatic function on the Pig class and in its simplest form takes a
fragment of Pig Latin that defines the pipeline asitsinput:

Compile returns an instance of Pig object. This object can have certain values undefined.

For example, you may want to define a pipeline without yet specifying the location of the
input to the pipeline. The parameter will be indicated by a dollar sign followed by a sequence
of apha-numeric or underscore characters. Values for these parameters must be provided
later at the time bind() is called on the Pig object. To call run() on a Pig object without all
parameters being bound is an error.

Bind: Resolve the parameters during the bind call.

Please note that all parameters must be resolved during bind. Having unbound parameters
while running your script isan error. Also note that even if your script is fully defined during
compile, bind without parameters still must be called.

Run: Bind call returns an instance of BoundScript object that can be used to execute the
pipeline. The simplest way to execute the pipeline isto call runSingle function. (However,
as mentioned later, thisworks only if asingle set of variablesisbound to the parameters.
Otherwise, if multiple set of variables are bound, an exception will be thrown if runSingleis

8
8

The function returns a PigStats object that tells you whether the run succeeded or failed. In

case of success, additional run statistics are provided.
Embedded Python Example
A complete embedded example is shown below.

Control Structures

1.2 Invocation Details

All three APIs (compile, bind, run) discussed in the previous section have several versions
depending on what you are trying to do.

1.2.1 Compile

Initsbasic form, compile just takes a Pig Latin fragment that defines the pipeline as
described in the previous section. Additionally, the pipeline can be given a name. This name
isonly used when the embedded script isinvoked via the PigRunner Java APl (as discussed
later in this document).

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 5

Control Structures

In addition to providing Pig script viaastring, you can storeit in afile and pass the file to the
compilecall:

Y ou can aso name a pipeline stored in the script:

1.2.2Bind

Inits simplest form, bind takes no parameters. In this case, an implicit bind is performed; Pig
internally constructs amap of parameters from the local variables specified by the user in the

Finally, you might want to run the same pipeline in parallel with a different set of parameters,
for instance for multiple dates. In this case, bind function, needs to be passed alist of maps
with each element of the list containing parameters for a single invocation. In the example
below, the pipelineisrun for the US, the UK, and Brazil.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 6

Control Structures

1.2.3 Run

We have already seen that the simplest way to run a script isto call runSingle without any
parameters. Additionally, a Java Properties object or afile containing alist of properties can
be passed to this call. The properties are passed to Pig and atreated as any other properties
passed from command line.

A more general version of run allows to run one or more pipelines concurrently. In this case,
alist of PigStats resultsis returned — one for each pipeline run. The example in the previous
section shows how to make use of this call.

Asthe case with runSingle, a set of Java Properties or a property file can be passed to the
cal.

1.2.4 Passing Parameters to a Script

Inside your script, you can define parameters and then pass parameters from command line to
your script. There are two ways to pass parameters to your script:

1.2.4.11. -param

Similar to regular Pig parameter substitution, you can define parameters using -param/—
param_file on Pig's command line. This variable will be treated as one of the binding
variables when binding the Pig Latin script. For example, you can invoke the below Python
script using: pig —param loadfile=student.txt script.py.

Page 7

Control Structures

1.2.4.2 2. Command line arguments

Currently this feature is only available in Python and Groovy. Y ou can pass command line
arguments (the arguments after the script file name) to Python. These will become sys.argv
in Python and will be passed as main's arguments in Groovy. For example: pig script.py
student.txt. The corresponding script is:

and in Groovy, pig script.groovy student.txt:

1.3 PigRunner API

Starting with Pig 0.8, some applications such as Oozie workflow invoke Pig using the
PigRunner Java class rather than through the command line. For these applications, the
PigRunner interface has been expanded to accommodate embedded Pig. PigRunner accepts
Python and JavaScript scripts as input. These scripts can potentially contain multiple Pig
pipelines; therefore, we need away to return results for al of them.

To do this and to preserve backward compatibility PigStats and related objects were
expanded as shown below:

* PigStatsisnow an abstract class. (PigStats as it was before has become SimplePigStats.)
* SimplePigStatsis anew class that extends PigStats. SimplePigStats.getAll Stats() will
return null.

EmbeddedPigStats is a new class that extends PigStats. EmbeddedPigStats will return
null for methods not listed in the proposal below.

isEmbedded() is a new abstract method that accommodates embedded Pig.

Page 8

Control Structures

o getAllStats() and List< > getAllErrorMessages() methods were added to the PigStats
class. The map returned from getAllStats is keyed on the name of the pipeline provided in
the compile call. If the name was not compiled an internally generated id would be used.
The PigProgressNotificationListener interface was modified to add script id to all its
methods.

For more details, see Java Objects.
1.4 Usage Examples

1.4.1 Passing a Pig Script

This example shows you how to pass an entire Pig script to the compile call.

1.4.2 Convergence

Thereisaclass of problems that involve iterating over a data pipeline an indeterminate
number of times until a certain value is reached. Examples arise in machine learning, graph
traversal, and a host of numerical analysis problems which involve finding interpolations,
extrapolations or regressions. The Python example below shows one way to achieve
convergence using Pig scripts.

Page 9

Control Structures

1.4.3 Automated Pig Latin Generation

A number of user frameworks do automated generation of Pig Latin.

1.4.3.1 Conditional Compilation

A sub-use case of automated generation is conditional code generation. Different processing
might be required based on whether thisis weekday or a weekend.

1.4.3.2 Parallel Execution

Another sub-use case of automated generation is parallel execution of identical pipelines.
Y ou may have asingle pipeline that you would like to run multiple data sets through in
parallel. In the example below, the pipelineisrun for the US, the UK, and Brazil.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 10

Control Structures

1.5 Java Objects

1.5.1 Pig Object

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 11

Control Structures

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Control Structures

1.5.2 BoundScript Object

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Control Structures

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Control Structures

1.5.3 PigStats Object

1.5.4 PigProgressNotificationListener Object

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 15

Control Structures

2 Embedded Pig - Java

To enable control flow, you can embed Pig Latin statements and Pig commands in the Java
programming language.

Note that host languages and the languages of UDFs (included as part of the embedded

Pig) are completely orthogonal. For example, a Pig Latin statement that registers a Java
UDF may be embedded in Python, JavaScript, Groovy, or Java. The exception to thisruleis
"combined" scripts — here the languages must match (see the Advanced Topics for Python,
Advanced Topics for JavaScript and Advanced Topics for Groovy).

2.1 PigServer Interface

Currently, PigServer isthe main interface for embedding Pig in Java. PigServer can now be
instantiated from multiple threads. (In the past, PigServer contained references to static data
that prevented multiple instances of the object to be created from different threads within
your application.) Please note that PigServer isNOT thread safe; the same object can't be
shared across multiple threads.

Page 16

udf.html#jython-advanced
udf.html#js-advanced
udf.html#groovy-advanced
http://pig.apache.org/docs/r0.13.0/api/org/apache/pig/PigServer.html

Control Structures

2.2 Usage Examples

L ocal Mode

From your current working directory, compile the program. (Note that idlocal.class is written
to your current working directory. Include “.” in the class path when you run the program.)

From your current working directory, run the program. To view the results, check the output

=
)
5
o)
S

idlocal .java - The sample codeis based on Pig Latin statements that extract al user IDs from
the /etc/passwd file. Copy the /etc/passwd file to your local working directory.

Mapreduce Mode
Point SHADOOPDIR to the directory that contains the hadoop-site.xml file. Example:

From your current working directory, compile the program. (Note that idmapreduce.class
iswritten to your current working directory. Include “.” in the class path when you run the

program.)

Page 17

Control Structures

From your current working directory, run the program. To view the results, check the idout
directory on your Hadoop system.

idmapreduce.java - The sample code is based on Pig Latin statements that extract all user IDs
from the /etc/passwd file. Copy the /etc/passwd file to your home directory on the HDFS.

3 Pig Macros

Pig Latin supports the definition, expansion, and import of macros.

3.1 DEFINE (macros)

Defines a Pig macro.

3.1.1 Syntax

Define Macro

DEFINE macro_name (param [, param ...]) RETURNS {void | dias[, dias...]} { pig_latin_fragment };

Expand Macro

dias[, dias...] = macro_name (param [, param ...]) ;

3.1.2 Terms

macro_name The name of the macro. Macro names are global.

Page 18

param

void

dias

pig_latin_fragment

3.1.3 Usage

M acr o Definition

Control Structures

(optional) A comma-separated list of one or more
parameters, including IN aliases (Pig relations),
enclosed in parentheses, that are referenced in the Pig
Latin fragment.

Unlike user defined functions (UDFs), which only
allow quoted strings as its parameters, Pig macros
support four types of parameters:

« dias(IDENTIFIER)

e integer

o float

e dtring literal (quoted string)

Note that type is NOT part of parameter definition.
It isyour responsibility to document the types of the
parameters in a macro.

If the macro has no return alias, then void must be
specified.

(optional) A comma-separated list of one or more
return aliases (Pig relations) that are referenced in the
Pig Latin fragment. The alias must exist in the macro
in the form $<alias>.

If the macro has no return dias, then void must be
specified.

One or more Pig Latin statements, enclosed in curly
brackets.

A macro definition can appear anywhere in a Pig script as long as it appears prior to the first
use. A macro definition can include references to other macros as long as the referenced
macros are defined prior to the macro definition. Recursive references are not allowed.

Note the following restrictions:

e Macros are not allowed inside a FOREACH nested block.
e Macros cannot contain Grunt shell commands.
* Macros cannot include a user-defined schemathat has a name collision with an dliasin

the macro.

In this example the macro is named my_macro. Note that only aliases A and C arevisible
from the outside; alias B is not visible from the outside.

Page 19

basic.html#nested-block
cmds.html#shell-cmds

Control Structures

Macro Expansion
A macro can be expanded inline using the macro expansion syntax. Note the following:

Any aliasin the macro which isn't visible from the outside will be prefixed with a macro
name and suffixed with an instance id to avoid namespace collision.

Macro expansion is not a complete replacement for function calls. Recursive expansions
are not supported.

In this example my_macro (defined above) is expanded. Because aias B is not visible from
the outside it is renamed macro_my_macro_B 0.

Macro Import

A macro can be imported from another Pig script (see IMPORT (macros)). Splitting your
macros from your main Pig script is useful for making reusable code.

3.1.4 Examples

In this example no parameters are passed to the macro.

In this example parameters are passed and returned.

Control Structures

In this example the macro does not have areturn alias; thus, void must be specified.

In this example a name collision will occur. Here letter B is used as alias hame and as name
in user-defined schema. Pig will throw an exception when name collision is detected.

This example demonstrates the importance of knowing parameter types before using them in
amacro script. Notice that when pass parameter $outfile to my_macrol inside my_macro2, it
must be quoted.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 21

Control Structures

In this example amacro (group_with_parallel) refers to another macro (foreach_count).

3.2 IMPORT (macros)
Import macros defined in a separate file.

3.2.1 Syntax

IMPORT ‘file-with-macro’;

3.2.2 Terms

file-with-macro The name of afile (enclosed in single quotes) that
contains one or more macro definitions; for example,
'my_macro.pig' or 'mypath/my_macro.pig'.

Macro names are global and all macros share the
same name space. While the file can contain more
than one macro definition, having two macros with
the same name in your execution context will result
inan error.

Files are imported based on either (1) the given

file path or (2) the import path specified viathe

Pig property pig.import.search.path. If afile path

is given, whether absolute or relative to the current
directory (starting with . or ..), the import path will be
ignored.

Page 22

Control Structures

3.2.3 Usage

Use the IMPORT command to import a macro defined in a separate file into your Pig script.

IMPORT adds the macro definitions to the Pig Latin namespace; these macros can then be
invoked asif they were defined in the samefile.

Macros can only contain Pig Latin statements; Grunt shell commands are not supported.
REGISTER statements and parameter definitions with %default or %declare are both valid
however. Y our macro file also IMPORT other macro files, so long as these imports are not
recursive.

See also: DEFINE (macros)

3.2.4 Example

In this example, because a path is not given, Pig will use the import path specified in
pi g.inport.search. path.

/* myscript.pig */

| MPORT ' nmy_nmacro. pi g';

4 Parameter Substitution

4.1 Description

Substitute values for parameters at run time.
4.1.1 Syntax: Specifying Parameters Using the Pig Command Line
pig {-param param_name = param_value | -param_filefile_name} [-debug | -dryrun] script
4.1.2 Syntax: Specifying Parameters Using Preprocessor Statements in a Pig Script

{%declare | %odefault} param_name param_value

4.1.3 Terms
pig Keyword
Note: exec, run, and explain also support parameter
substitution.

Page 23

-param

param_name

param_value

-param _file

Control Structures

Flag. Use this option when the parameter isincluded
in the command line.

Multiple parameters can be specified. If the same
parameter is specified multiple times, the last value
will be used and awarning will be generated.

Command line parameters and parameter files can
be combined with command line parameters taking
precedence.

The name of the parameter.

The parameter name has the structure of a standard
language identifier: it must start with aletter or
underscore followed by any number of letters, digits,
and underscores.

Parameter names are case insensitive.

If you pass a parameter to a script that the script
does not use, this parameter is silently ignored. If the
script has a parameter and no valueis supplied or
substituted, an error will result.

The value of the parameter.
A parameter value can take two forms:

* A sequence of characters enclosed in single
or double quotes. In this case the unquoted
version of the valueis used during substitution.
Quotes within the value can be escaped with the
backslash character (\). Single word values that
don't use specia characters such as % or = don't
have to be quoted.

* A command enclosed in back ticks.

The value of a parameter, in either form, can be
expressed in terms of other parameters aslong as
the values of the dependent parameters are already
defined.

There are no hard limits on the size except that
parameters need to fit into memory.

Flag. Use this option when the parameter isincluded
inafile.

Multiple files can be specified. If the same parameter
is present multiple timesin thefile, the last value
will be used and awarning will be generated. If a
parameter present in multiple files, the value from the
last file will be used and awarning will be generated.

Page 24

file_name

-debug

-dryrun

script

%declare

Control Structures

Command line parameters and parameter files can
be combined with command line parameters taking
precedence.

The name of afile containing one or more
parameters.

A parameter file will contain one line per parameter.
Empty lines are allowed. Perl-style (#) comment lines
are also alowed. Comments must take afull line

and # must be the first character on the line. Each
parameter line will be of the form: param_name =
param_value. White spaces around = are allowed but
are optional.

Flag. With this option, the script is run and
afully substituted Pig script is produced

in the current working directory named
original_script_name.substituted

Flag. With this option, the script is not run
and afully substituted Pig script is produced
in the current working directory named
original_script_name.substituted

A pig script. The pig script must be the last element
in the Pig command line.

o |If parameters are specified in the Pig command
line or in a parameter file, the script should
include a $param_name for each para_name
included in the command line or parameter file.

e |f parameters are specified using the
preprocessor statements, the script should
include either %declare or %default.

e Inthe script, parameter names can be escaped
with the backslash character (\) in which case
substitution does not take place.

Preprocessor statement included in a Pig script.

Use to describe one parameter in terms of other
parameters.

The declare statement is processed prior to running
the Pig script.

The scope of a parameter value defined using declare
isall the lines following the declare statement until
the next declare statement that defines the same
parameter is encountered. When used with run/exec
command, see Scope section.

Page 25

Control Structures

%default Preprocessor statement included in a Pig script.

Use to provide a default value for a parameter. The
default value has the lowest priority and is used if a
parameter value has not been defined by other means.

The default statement is processed prior to running
the Pig script.
The scopeis the same as for %declare.

4.2 Usage

Parameter substitution enables you to write Pig scripts that include parameters and to supply
values for these parameters at run time. For instance, suppose you have ajob that needs

to run every day using the current day's data. Y ou can create a Pig script that includes a
parameter for the date. Then, when you run this script you can specify or supply avalue for
the date parameter using one of the supported methods.

4.2.1 Specifying Parameters

Y ou can specify parameter names and parameter values as follows:

* Aspart of acommand line.

* In parameter file, as part of acommand line.

* With the declare statement, as part of Pig script.
* With default statement, as part of aPig script.

Parameter substitution may be used inside of macros. When there are conflicts between
names of parameters defined at the top level and names of arguments or return values for a
given macro, then ones inside the macro are used. See DEFINE (macros).

4.2.2 Precedence

Precedence for parametersis as follows, from highest to lowest:

1. Parameters defined using the declare statement

2. Parameters defined in the command line using -param

3. Parameters defined in parameter files specified by -param_file
4,

Parameters defined using the default statement

4.2.3 Processing Order and Precedence

Parameters are processed as follows:

» Command line parameters are scanned in the order they are specified on the command
line.

Page 26

Control Structures

Parameter files are scanned in the order they are specified on the command line. Within
each file, the parameters are processed in the order they are listed.

Declare and default preprocessors statements are processed in the order they appear in the
Pig script.

4.2.4 Scope

Scope of the parametersis globa except when used with run/exec command. Caller would
not see the parameters declared within the callee's scripts. See example for more details.

4.3 Examples

4.3.1 Specifying Parameters in the Command Line

Suppose we have a datafile called 'mydata’ and a pig script called 'myscript.pig'.

myscript.pig

In this example the parameter (data) and the parameter value (mydata) are specified in the
command line. If the parameter name in the command line (data) and the parameter namein
the script ($data) do not match, the script will not run. If the value for the parameter (mydata)
isnot found, an error is generated.

4.3.2 Specifying parameters Using a Parameter File

Suppose we have a parameter file called 'myparams.’

Page 27

Control Structures

In this example the parameters and val ues are passed to the script using the parameter file.

4.3.3 Specifying Parameters Using the Declare Statement

In this example the command is executed and its stdout is used as the parameter value.

4.3.4 Specifying Parameters Using the Default Statement

In this example the parameter (DATE) and value ('20090101") are specified in the Pig script
using the default statement. If avalue for DATE is not specified elsewhere, the default value
20090101 is used.

4.3.5 Specifying Parameter Values as a sequence of Characters

In this example the characters (in this case, Joe's URL) can be enclosed in single or double
guotes, and quotes within the sequence of characters can be escaped.

In this example single word values that don't use specia characters (in this case, mydata)
don't have to be enclosed in quotes.

Page 28

Control Structures

4.3.6 Specifying Parameter Values as a Command

In this example the command is enclosed in back ticks. First, the parameters mycmd and date
are substituted when the declare statement is encountered. Then the resulting command is
executed and its stdout is placed in the path before the load statement is run.

4.3.7 Scoping with run/exec commands

In this example, parameters passed to run/exec command or declared within the called scripts
are not visible to the caller.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 29

	Table of contents
	1 Embedded Pig - Python, JavaScript and Groovy
	1.1 Invocation Basics
	1.2 Invocation Details
	1.2.1 Compile
	1.2.2 Bind
	1.2.3 Run
	1.2.4 Passing Parameters to a Script
	1.2.4.1 1. -param
	1.2.4.2 2. Command line arguments

	1.3 PigRunner API
	1.4 Usage Examples
	1.4.1 Passing a Pig Script
	1.4.2 Convergence
	1.4.3 Automated Pig Latin Generation
	1.4.3.1 Conditional Compilation
	1.4.3.2 Parallel Execution

	1.5 Java Objects
	1.5.1 Pig Object
	1.5.2 BoundScript Object
	1.5.3 PigStats Object
	1.5.4 PigProgressNotificationListener Object

	2 Embedded Pig - Java
	2.1 PigServer Interface
	2.2 Usage Examples

	3 Pig Macros
	3.1 DEFINE (macros)
	3.1.1 Syntax
	3.1.2 Terms
	3.1.3 Usage
	3.1.4 Examples

	3.2 IMPORT (macros)
	3.2.1 Syntax
	3.2.2 Terms
	3.2.3 Usage
	3.2.4 Example

	4 Parameter Substitution
	4.1 Description
	4.1.1 Syntax: Specifying Parameters Using the Pig Command Line
	4.1.2 Syntax: Specifying Parameters Using Preprocessor Statements in a Pig Script
	4.1.3 Terms

	4.2 Usage
	4.2.1 Specifying Parameters
	4.2.2 Precedence
	4.2.3 Processing Order and Precedence
	4.2.4 Scope

	4.3 Examples
	4.3.1 Specifying Parameters in the Command Line
	4.3.2 Specifying parameters Using a Parameter File
	4.3.3 Specifying Parameters Using the Declare Statement
	4.3.4 Specifying Parameters Using the Default Statement
	4.3.5 Specifying Parameter Values as a sequence of Characters
	4.3.6 Specifying Parameter Values as a Command
	4.3.7 Scoping with run/exec commands

