User Defined Functions

Table of contents

I g1 0o 1 (o] o PSSP 2
2 WIIING JAVA UDFS........cciice ettt e ettt teetesnaesneenaesne e seeneeenee e 2
3 WItING JYTNON UDFS......ccuiiiiieicieiee ettt 35
4 Writing JAVaSCIIPL UDFS.......c.ooiiiiiiieieseeee e 38
5 WIItING RUDY UDFS......ciiiiiiieiiiie sttt st sre et sre e 40
6 WIItiNg GroOVY UDFS.........ooiiiiiece ettt 43
7 Writing PYthon UDFS.........coiieececece ettt s 47

User Defined Functions

1 Introduction

Pig provides extensive support for user defined functions (UDFs) as away to specify custom
processing. Pig UDFs can currently be implemented in six languages: Java, Jython, Python,
JavaScript, Ruby and Groovy.

The most extensive support is provided for Java functions. Y ou can customize all parts

of the processing including data load/store, column transformation, and aggregation. Java
functions are al'so more efficient because they are implemented in the same language as
Pig and because additional interfaces are supported such as the Algebraic Interface and the
Accumulator Interface.

Limited support is provided for Jython, Python, JavaScript, Ruby and Groovy functions.
These functions are new, still evolving, additions to the system. Currently only the basic
interface is supported; load/store functions are not supported. Furthermore, JavaScript, Ruby
and Groovy are provided as experimental features because they did not go through the same
amount of testing as Java or Jython. At runtime note that Pig will automatically detect the
usage of a scripting UDF in the Pig script and will automatically ship the corresponding
scripting jar, either Jython, Rhino, JRuby or Groovy-all, to the backend. Python does not
reguire any runtime engine since it invoke python command line and stream data in and out
of it.

Pig also provides support for Piggy Bank, arepository for JAVA UDFs. Through Piggy Bank
you can access Java UDFs written by other users and contribute Java UDFs that you have
written.

2 Writing Java UDFs
2.1 Eval Functions

2.1.1 How to Use a Simple Eval Function

Eval isthe most common type of function. It can be used in FOREACH statements as shown
in this script:

- myscript.pig
REG STER nyudfs.j ar;
A = LOAD 'student _data' AS (nane: chararray, age: int, gpa: float);
B = FOREACH A GENERATE nyudfs. UPPER(nane) ;
DUWP B;

The command below can be used to run the script. Note that all examplesin this document
run in local mode for simplicity but the examples can also run in Tez local/Mapreduce/ Tez
mode. For more information on how to run Pig, please see the PigTutorial.

Page 2

User Defined Functions

pig -x local nyscript.pig

Thefirst line of the script providesthe location of thej ar fi | e that contains the UDF.
(Note that there are no quotes around the jar file. Having quotes would result in a syntax
error.) To locate the jar file, Pig first checksthe cl asspat h. If thejar file can't be found in
the classpath, Pig assumes that the location is either an absolute path or a path relative to the
location from which Pig was invoked. If the jar file can't be found, an error will be printed:
java.io.| OException: Can't read jar file: nyudfs.jar.

Multipler egi st er commands can be used in the same script. If the same fully-qualified
function is present in multiple jars, the first occurrence will be used consistently with Java
semantics.

The name of the UDF hasto be fully qualified with the package name or an error will be
reported: j ava. i 0. | OException: Cannot instanti ate: UPPER. Also, the
function name is case sensitive (UPPER and upper are not the same). A UDF can take one or
more parameters. The exact signature of the function should be clear from its documentation.

The function provided in this example takes an ASCI| string and produces its uppercase
version. If you are familiar with column transformation functions in SQL, you will recognize
that UPPER fits this concept. However, as we will see later in the document, eval functions
in Pig go beyond column transformation functions and include aggregate and filter functions.

If you are just auser of UDFs, thisis most of what you need to know about UDFs to use
them in your code.

2.1.2 How to Write a Simple Eval Function
Let'snow look at the implementation of the UPPER UDF.

1 package nyudfs;

2 inport java.io.|OException;

3 inport org.apache. pi g. Eval Func;

4 inport org.apache. pig.data. Tupl e;

5

6 public class UPPER extends Eval Func<Stri ng>

7 A

8 public String exec(Tuple input) throws | OException {

9 if (input == null || input.size() == 0 || input.get(0) == null)
10 return null;

11 try{

12 String str = (String)input.get(0);

13 return str.toUpperCase();

14 }cat ch(Exception e){

15 t hrow new | CExcepti on(" Caught exception processing input row ", e);
16 }

17 }

18 1}

Page 3

User Defined Functions

Line 1 indicates that the function is part of the myudf s package. The UDF class extends
the Eval Func classwhichisthe base class for al eval functions. It is parameterized with
the return type of the UDF whichisaJava St r i ng in this case. We will look into the

Eval Func classin more detail |ater, but for now all we need to do isto implement the
exec function. Thisfunction isinvoked on every input tuple. The input into the function is
atuple with input parametersin the order they are passed to the function in the Pig script. In
our example, it will contain asingle string field corresponding to the student name.

Thefirst thing to decide iswhat to do with invalid data. This depends on the format of the
data. If the datais of type byt ear r ay it meansthat it has not yet been converted to its
proper type. In this case, if the format of the data does not match the expected type, a NULL
value should be returned. If, on the other hand, the input data is of another type, this means
that the conversion has already happened and the data should be in the correct format. Thisis
the case with our example and that's why it throws an error (line 15.)

Also, note that lines 9-10 check if the input datais null or empty and if so returns null.
The actual function implementation ison lines 12-13 and is self-explanatory.

Now that we have the function implemented, it needs to be compiled and included in ajar.
You will need to build pi g. j ar to compile your UDF. Y ou can use the following set of
commands to checkout the code from SVN repository and create pig.jar:

svn co http://svn. apache. org/repos/ asf/pi g/trunk
cd trunk
ant

Y ou should see pi g. j ar inyour current working directory. The set of commands below
first compiles the function and then creates ajar file that containsit.

cd myudfs

javac -cp pig.jar UPPER java
cd ..

jar -cf nyudfs.jar nyudfs

Y ou should now see nyudf s. j ar inyour current working directory. Y ou can usethisjar
with the script described in the previous section.

2.1.3 Aggregate Functions

Aggregate functions are another common type of eval function. Aggregate functions are
usually applied to grouped data, as shown in this script:

- nmyscript2.pig
A = LOAD 'student_data' AS (nane: chararray, age: int, gpa: float);
B = GROUP A BY nane;

Page 4

User Defined Functions

C = FOREACH B GENERATE group, COUNT(A);
DUWMP C;

The script above uses the COUNT function to count the number of students with the same
name. There are a couple of things to note about this script. First, even though we are using
afunction, thereisnor egi st er command. Second, the function is not qualified with the
package name. The reason for both isthat COUNT isabui | ti n function meaning that it
comes with the Pig distribution. These are the only two differences between builtins and
UDFs. Builtins are discussed in more detail later in this document.

2.1.4 Algebraic Interface

An aggregate function is an eval function that takes a bag and returns a scalar value. One
interesting and useful property of many aggregate functions is that they can be computed
incrementally in adistributed fashion. We call these functionsal gebr ai ¢. COUNT isan
example of an algebraic function because we can count the number of elements in a subset of
the data and then sum the counts to produce afinal output. In the Hadoop world, this means
that the partial computations can be done by the map and combiner, and the final result can
be computed by the reducer.

It is very important for performance to make sure that aggregate functions that are algebraic
are implemented as such. Let'slook at the implementation of the COUNT function to see
what this means. (Error handling and some other code is omitted to save space. The full code
can be accessed here.)

public class COUNT extends Eval Func<Long> i npl enments Al gebrai c{
public Long exec(Tuple input) throws | OException {return count(input);}
public String getlnitial () {return Initial.class.getNane();}
public String getlnternmed() {return Interned.class.getNane();}
public String getFinal () {return Final.class.getNane();}
static public class Initial extends Eval Func<Tupl e> {
public Tupl e exec(Tuple input) throws | OException {return
Tupl eFact ory. get | nst ance() . newTupl e(count (i nput));}

static public class Internmed extends Eval Func<Tupl e> {
public Tupl e exec(Tuple input) throws | OException {return
Tupl eFact ory. get | nst ance() . newTupl e(sun(i nput));}

static public class Final extends Eval Func<Long> {
public Long exec(Tuple input) throws | OException {return sun(input);}
}
static protected Long count(Tuple input) throws ExecException {
bj ect values = input.get(0);
if (val ues instanceof DataBag) return ((DataBag)val ues).size();
el se if (values instanceof Map) return new Long(((Map)val ues).size());
}
static protected Long sunm(Tuple input) throws ExecException, Nunber Format Exception {
Dat aBag val ues = (DataBag)i nput.get(0);
I ong sum = 0;
for (Iterator (Tuple) it = values.iterator(); it.hasNext();) {

Page 5

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/builtin/COUNT.java?view=markup

User Defined Functions

Tuple t = it.next();
sum += (Long)t.get(0);
}

return sum

}

COUNT implements Al gebr ai c interface which looks like this:

public interface Al gebraic{
public String getlnitial();
public String getlnterned();
public String getFinal();

}

For afunction to be algebraic, it needs to implement Al gebr ai c interface that consist of
definition of three classes derived from Eval Func. The contract is that the exec function
of thel ni ti al classiscalled once and is passed the original input tuple. Its output isa
tuple that contains partial results. The exec function of the | nt er ned class can be called
zero or more times and takes as its input a tuple that contains partial results produced by the
I nitial classor by prior invocations of thel nt er ned class and produces a tuple with
another partial result. Finally, the exec function of the Fi nal classis called and produces
the final result as a scalar type.

Here's the way to think about thisin the Hadoop world. The exec function of thel ni ti al
classisinvoked once for each input tuple by the map process and produces partial results.
The exec function of the |l nt er med classisinvoked once by each conbi ner invocation
(which can happen zero or more times) and also produces partial results. The exec function
of the Fi nal classisinvoked once by the reducer and produces the final result.

Take alook at the COUNT implementation to see how thisis done. Note that the exec
function of thel ni ti al and| nt er med classes is parameterized with Tupl e and the
exec of theFi nal classis parameterized with the real type of the function, which in the
case of the COUNT isLong. Also, note that the fully-qualified name of the class needsto be
returned fromget I ni ti al ,get | nt er med, and get Fi nal methods.

2.1.5 Accumulator Interface

In Pig, problems with memory usage can occur when data, which results from a group or
cogroup operation, needs to be placed in abag and passed in its entirety to a UDF.

This problem is partially addressed by Algebraic UDFs that use the combiner and can deal
with data being passed to them incrementally during different processing phases (map,
combiner, and reduce). However, there are a number of UDFs that are not Algebraic, don't
use the combiner, but still don’t need to be given all data at once.

Page 6

User Defined Functions

The new Accumulator interface is designed to decrease memory usage by targeting such
UDFs. For the functions that implement this interface, Pig guarantees that the data for the
same key is passed continuously but in small increments. To work with incremental data,
here is the interface a UDF needs to implement:

There are several things to note here:

1
2.

> w

o

o

Each UDF must extend the Eval Func class and implement all necessary functions there.
If afunction is algebraic but can be used in a FOREACH statement with accumulator
functions, it needs to implement the Accumulator interface in addition to the Algebraic
interface.

The interface is parameterized with the return type of the function.

The accumulate function is guaranteed to be called one or more times, passing one or
more tuplesin a bag, to the UDF. (Note that the tuple that is passed to the accumulator
has the same content as the one passed to exec — all the parameters passed to the UDF —
one of which should be abag.)

The getVaue function is called after al the tuples for a particular key have been
processed to retrieve the final value.

The cleanup function is called after getValue but before the next value is processed.

Here us a code snippet of the integer version of the MAX function that implements the
interface:

User Defined Functions

2.1.6 Filter Functions

Filter functions are eval functions that return abool ean value. Filter functions can be used
anywhere a Boolean expression is appropriate, including the FI LTER operator or bi ncond
expression.

The example below usesthe | sEnpy builtin filter function to implement joins.

Note that, even if filtering is omitted, the same results will be produced because the
f or each resultsisacross product and cross products get rid of empty bags. However,
doing up-front filtering is more efficient since it reduces the input of the cross product.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 8

User Defined Functions

The implementation of the | sEnpt y function looks like this:

2.1.7 Implement UDF by Simulation

When implementing more advanced types of EvalFuncs, the ssmpler implementations can

be automatically provided by Pig. Thusif your UDF implements Algebraic then you will get
the Accumulator interface and basic the basic EvalFunc exec method for free. Similarly, if
your UDF implements Accumulator Interface you will get the basic Eval Func exec method
for free. You will not get the Algebraic implemenation. Note that these free implementations
are based on simulation, which might not be the most efficient. If you wish to ensure the
efficiency of your Accumulator of EvalFunc exec method, you may still implement them
yourself and your implementations will be used.

Page 9

User Defined Functions

2.1.8 Pig Types and Native Java Types

The main thing to know about Pig's type system is that Pig uses native Javatypes for almost
al of itstypes, as shown in thistable.

bytearray DataByteArray
chararray String

int Integer

long Long

float Float

double Double
boolean Boolean
datetime DateTime
bigdecimal BigDecimal
biginteger Biglnteger
tuple Tuple

bag DataBag

map Map<Object, Object>

All Pig-specific classes are available here.

Tupl e and Dat aBag are different in that they are not concrete classes but rather interfaces.
This enables users to extend Pig with their own versions of tuples and bags. As aresult,
UDFs cannot directly instantiate bags or tuples; they need to go through factory classes:
Tupl eFact ory and BagFact ory.

The builtin TOKENI ZE function shows how bags and tuples are created. A function takes
atext string as input and returns a bag of words from the text. (Note that currently Pig bags
always contain tuples.)

package org. apache. pig. builtin;

import java.io.| OException;

import java.util.StringTokenizer;

i mport org. apache. pi g. Eval Func;

i nport org. apache. pi g. dat a. BagFact ory;
i mport org. apache. pi g. dat a. Dat aBag;

i nport org. apache. pi g. dat a. Tupl e;

Page 10

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/data/

User Defined Functions

2.1.9 Schemas and Java UDFs

Pig uses type information for validation and performance. It isimportant for UDFs to
participate in type propagation. Our UDFs generally make no effort to communicate their
output schemato Pig. Thisis because Pig can usually figure out thisinformation by using
Java's Reflection. If your UDF returns a scalar or amap, no work isrequired. However, if
your UDF returns atuple or a bag (of tuples), it needs to help Pig figure out the structure of
the tuple.

If aUDF returns atuple or a bag and schemainformation is not provided, Pig assumes that
the tuple contains asingle field of type bytearray. If thisis not the case, then not specifying
the schema can cause failures. We look at this next.

Let's assume that we have UDF Swap that, given atuple with two fields, swaps their order.
Let's assume that the UDF does not specify a schemaand look at the scripts below:

This script will result in the following error cause by line4 (C = foreach B
generate $2;).

Page 11

http://www.oracle.com/technetwork/articles/java/javareflection-1536171.html

User Defined Functions

Thisis because Pig isonly aware of two columnsin B while line 4 is requesting the third
column of the tuple. (Column indexing in Pig starts with 0.)

The function, including the schema, looks like this:

The function creates a schemawith asinglefield (of type Fi el dSchema) of type

t upl e. The name of thefield is constructed using the get SchenmaNane function of the
Eval Func class. The name consists of the name of the UDF function, the first parameter
passed to it, and a sequence number to guarantee uniqueness. In the previous script, if you
replacedunp D; withdescri be B; , you will seethe following output:

Page 12

User Defined Functions

The second parameter to the Fi el dSchenma constructor is the schema representing this
field, which in this caseis atuple with two fields. The third parameter represents the type

of the schema, which in this caseisa TUPLE. All supported schematypes are defined in the
or g. apache. pi g. dat a. Dat aType class.

Y ou need to import the or g. apache. pi g. dat a. Dat aType class
into your code to define schemas. Y ou aso need to import the schema class
org. apache. pi g.i nmpl . | ogi cal Layer. schema. Schema.

The exampl e above shows how to create an output schema for atuple. Doing thisfor abag is
very similar. Let's extend the TOKENI ZE function to do that.

Asyou can see in the example below, thisis very similar to the output schema definition in
the Swap function. One difference is that instead of reusing input schema, we create a brand
new field schemato represent the tokens stored in the bag. The other difference isthat the
type of the schema created is BAG (not TUPLE).

Page 13

User Defined Functions

One more note about schemas and UDFs. Users have requested the ability to examine the
input schema of the data before processing the data viaa UDF. For example, they would like
to know how to convert an input tuple to a map such that the keys in the map are the names
of the input columns. Currently there is no way to do this. Thisis afeature we would like to
support in the future.

2.1.10 Error Handling

There are several types of errors that can occur in a UDF:

1. Aneror that affects a particular row but is not likely to impact other rows. An example
of such an error would be a malformed input value or divide by zero problem. A
reasonable handling of this situation would be to emit awarning and return anull value.
ABS function in the next section demonstrates this approach. The current approach isto
write thewarning to st der r . Eventually we would like to pass alogger to the UDFs.
Note that returning aNULL value only makes sense if the malformed value s of type
byt ear r ay. Otherwise the proper type has been already created and should have an
appropriate value. If thisis not the case, it isan internal error and should cause the system
to fail. Both cases can be seen in the implementation of the ABS function in the next
section.

Page 14

User Defined Functions

2. Anerror that affects the entire processing but can succeed on retry. An example of such
afailureistheinability to open alookup file because the file could not be found. This
could be atemporary environmental issue that can go away on retry. A UDF can signal
thisto Pig by throwing an | OExcept i on aswith the case of the ABS function below.

3. Anerror that affects the entire processing and is not likely to succeed on retry. An
example of such afailureistheinability to open alookup file because of file permission
problems. Pig currently does not have away to handle this case. Hadoop does not have a
way to handle this case either. It will be handled the same way as 2 above.

2.1.11 Function Overloading

Before the type system was available in Pig, all values for the purpose of arithmetic
calculations were assumed to be doubles as the safest choice. However, thisis not very
efficient if the datais actually of type integer or long. (We saw about a 2x slowdown of a
guery when using double where integer could be used.) Now that Pig supports types we can
take advantage of the type information and choose the function that is most efficient for the
provided operands.

UDF writers are encouraged to provide type-specific versions of afunction if this can

result in better performance. On the other hand, we don't want the users of the functionsto
worry about different functions - the right thing should just happen. Pig allows for thisviaa
function table mechanism as shown in the next example.

This example shows the implementation of the ABS function that returns the absolute value
of anumeric value passed to it as inpuit.

import java.io. | OException;

import java.util.List;

inmport java.util.Arraylist;

i mport org. apache. pi g. Eval Func;

i mport org. apache. pi g. FuncSpec;

i mport org. apache. pi g. dat a. Tupl e;

i mport org.apache. pi g.inpl .| ogical Layer. Front endExcepti on;
i nport org.apache. pi g.i npl .| ogi cal Layer. schema. Schems;

i mport org. apache. pi g. dat a. Dat aType;

public class ABS extends Eval Func<Doubl e> {
publ i c Doubl e exec(Tuple input) throws | OException {

if (input == null || input.size() == 0)
return null;

Doubl e d;

try{
d = Dat aType. t oDoubl e(i nput. get (0));

} catch (Nunmber For mat Excepti on nfe){
Systemerr.println("Failed to process input; error - " + nfe.get Message());
return null;

} catch (Exception e){
t hrow new | CExcepti on(" Caught exception processing input row", e);

}

Page 15

User Defined Functions

The main thing to notice in thisexampleisthe get Ar gToFuncMappi ng() method.

This method returns alist that contains a mapping from the input schemato the class that
should be used to handle it. In this example the main class handlesthe byt ear r ay input
and outsources the rest of the work to other classes implemented in separate files in the same
package. The example of one such classis below. This class handles integer input values.

A note on error handling. The ABS class covers the case of the byt ear r ay which means
the data has not been converted yet to its actual type. Thisiswhy anull valueis returned
when Nunber For mat Except i on isencountered. However, the | nt Abs function isonly
called if the datais already of type | nt eger which meansit has already been converted to
the real type and bad format has been dealt with. Thisiswhy an exception isthrown if the
input can't becast to | nt eger.

The example above covers areasonably simple case where the UDF only takes one
parameter and there is a separate function for each parameter type. However, thiswill not
always bethe case. If Pig can't findanexact mat chittriestodoabest match.

Page 16

User Defined Functions

The rule for the best match isto find the most efficient function that can be used safely.
This means that Pig must find the function that, for each input parameter, provides the
smallest type that is equal to or greater than the input type. The type progression rules are:
i nt >l ong>f | oat >doubl e.

For instance, let's consider function MAX which is part of the pi ggybank described later in
this document. Given two values, the function returns the larger value. The function table for
MAX looks like this:

publ i c Li st <FuncSpec> get ArgToFuncMappi ng() throws FrontendException {
Li st <FuncSpec> funcLi st = new Arrayli st <FuncSpec>();
Util.addToFuncti onLi st (funcLi st, |ntMx.cl ass. get Nane(), DataType. | NTEGER);
Util.addToFuncti onLi st (funcLi st, Doubl eMax. cl ass. get Name(), DataType. DOUBLE) ;
Util.addToFuncti onLi st (funcLi st, Fl oat Max. cl ass. get Nane(), DataType. FLOAT);
Util.addToFuncti onLi st (funcLi st, LongMax. cl ass. get Name(), DataType. LONG) ;

return funcLi st;

}

TheWU i | . addToFuncti onLi st function isahelper function that adds an entry to the
list as the first argument, with the key of the class name passed as the second argument, and
the schema containing two fields of the same type as the third argument.

Let's now see how this function can be used in a Pig script:

REG STER pi ggybank. j ar

A = LOAD 'student_data' AS (name: chararray, gpal: float, gpa2: double);

B = FOREACH A GENERATE nane, org.apache. pi g. pi ggybank. eval uati on. nat h. MAX(gpal, gpa2);
DUWP B;

In this example, the function gets one parameter of typef | oat and another of type

doubl e. The best fit will be the function that takes two double values. Pig makes this choice
on the user's behalf by inserting implicit casts for the parameters. Running the script aboveis
equivalent to running the script below:

A = LOAD 'student _data' AS (nane: chararray, gpal: float, gpa2: double);
B = FOREACH A GENERATE nane, org.apache. pi g. pi ggybank. eval uati on. nat h. MAX((doubl e) gpal,
gpa2) ;

DUWP B;
A special case of thebest fit approach ishandling data without a schema specified.
Thetypefor thisdataisinterpreted asbyt ear r ay. Since the type of the data is not
known, there is no way to choose a best fit version. The only time acast is performed is
when the function table contains only a single entry. This works well to maintain backward
compatibility.

Page 17

User Defined Functions

Let'srevisit the UPPER function from our first example. Asit iswritten now, it would only
work if the datapassed to it is of type char ar r ay. To make it work with data whose typeis
not explicitly set, a function table with a single entry needs to be added:

Now the following script will ran:

Variable-length arguments:

The last input schemafield in get Ar gToFuncMappi ng() can be marked as vararg,
which enables UDF writers to create UDFs that take variable length arguments. Thisis done
by overriding the get SchemaType() method:

For an example see CONCAT.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 18

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/builtin/CONCAT.java?view=markup

User Defined Functions

2.1.12 Using Counters

Hadoop counters are easily accessible within EvalFunc by using PigStatusReporter object.
Hereis one example:

2.1.13 Access input schema inside EvalFunc

Not only inside outputSchema at compile time, input schemais aso accessible in exec at
runtime. For example:

2.1.14 Reporting Progress

A challenge of running alarge shared system is to make sure system resources are used
efficiently. One aspect of this challenge is detecting runaway processes that are no longer
making progress. Pig uses a heartbeat mechanism for this purpose. If any of the tasks stops
sending a heartbeat, the system assumesthat it is dead and kills it.

Page 19

User Defined Functions

Most of the time, single-tuple processing within a UDF is very short and does not require a
UDF to heartbeat. The sameistrue for aggregate functions that operate on large bags because
bag iteration code takes care of it. However, if you have a function that performs a complex
computation that can take an order of minutes to execute, you should add a progress indicator
to your code. Thisisvery easy to accomplish. The Eval Func classprovidesapr ogr ess
function that you need to call in your exec method.

For instance, the UPPER function would now ook as follows:

2.1.15 Using Distributed Cache

Use getCacheFiles or getShipFilesto return alist of HDFSfiles or local files that need to
be shipped to distributed cache. Inside exec method, you can assume that these files already
exist in distributed cache. For example:

Page 20

User Defined Functions

2.1.16 Compile time evaluation

If the parameters of the EvalFunc are al constants, Pig could evaluate the result at compile
time. The benefit of evaluating at compile time is performance optimization, and enable
certain other optimizations at front end (such as partition pruning, which only allow constant
not UDF in filter condition). By default, compile time evaluation is disabled in EvalFunc

to prevent potential side effect. To enable it, override allowCompileTimeCal culation. For
example:

2.1.17 Typecasting from bytearrays

Just like Load Function and Streaming, Java UDF has a getL oadCaster() method that

returns LoadCaster to convert byte arrays to specific types. A UDf implementation should
implement this if casts (implicit or explicit) from DataByteArray fields to other types need
to be supported. Default implementation returns null and Pig will determineif all parameters
passed to the UDF have identical loadcaster and use it when true.

2.1.18 Clean up static variable in Tez

In Tez, jvm could reuse for other tasks. It isimportant to cleanup static variable to make sure
there is no side effect. Here is one example:

basic.html#pig-streaming-input-output
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadCaster.java?view=markup

User Defined Functions

initialized = true;

@5t at i cDat ad eanup
public static void staticDataCd eanup() {
initialized = fal se;
}
}

2.2 Load/Store Functions

The load/store UDFs control how data goes into Pig and comes out of Pig. Often, the same
function handles both input and output but that does not have to be the case.

The Pig load/store API is aligned with Hadoop's I nputFormat and OutputFormat classes.
This enables you to create new LoadFunc and StoreFunc implementations based on existing
Hadoop InputFormat and OutputFormat classes with minimal code. The complexity of
reading the data and creating a record liesin the InputFormat while the complexity of writing
the datalies in the OutputFormat. This enables Pig to easily read/write datain new storage
formats as and when an Hadoop InputFormat and OutputFormat is available for them.

Note: Both the LoadFunc and StoreFunc implementations should use the Hadoop 20
API based classes (InputFormat/OutputFormat and related classes) under the new
org.apache.hadoop.mapreduce package instead of the old org.apache.hadoop.mapred
package.

2.2.1 Load Functions

L oadFunc abstract class has three main methods for loading data and for most use cases
it would suffice to extend it. There are three other optional interfaces which can be
implemented to achieve extended functionality:

» LoadMetadata has methods to deal with metadata - most implementation of |oaders
don't need to implement this unless they interact with some metadata system. The
getSchema() method in this interface provides away for loader implementations to
communicate the schema of the data back to pig. If aloader implementation returns data
comprised of fields of real types (rather than DataByteArray fields), it should provide
the schema describing the data returned through the getSchema() method. The other
methods are concerned with other types of metadata like partition keys and statistics.
Implementations can return null return values for these methods if they are not applicable
for that implementation.

* LoadPushDown has methods to push operations from Pig runtime into loader
implementations. Currently only the pushProjection() method is called by Pig to
communicate to the loader the exact fields that are required in the Pig script. The loader
implementation can choose to honor the request (return only those fields required by Pig

Page 22

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadFunc.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadMetadata.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadPushDown.java?view=markup

User Defined Functions

script) or not honor the request (return all fieldsin the data). If the loader implementation
can efficiently honor the request, it should implement L oadPushDown to improve query
performance. (Irrespective of whether the implementation can or cannot honor the
request, if the implementation also implements getSchema(), the schemareturned in
getSchema() should describe the entire tuple of data.)
pushProjection(): This method tells LoadFunc which fields are required in the Pig
script, thus enabling L oadFunc to optimize performance by loading only those fields
that are needed. pushProjection() takes arequiredFieldList. requiredFieldList is
read only and cannot be changed by LoadFunc. requiredFieldList includes alist
of requiredField: each requiredField indicates afield required by the Pig script;
each requiredField includes index, alias, type (which isreserved for future use),
and subFields. Pig will use the column index requiredField.index to communicate
with the LoadFunc about the fields required by the Pig script. If the required
field isamap, Pig will optionally pass requiredField.subFields which contains
alist of keysthat the Pig script needs for the map. For example, if the Pig script
needs two keys for the map, "key1" and "key2", the subFields for that map will
contain two requiredField; the aliasfield for the first RequiredField will be "keyl1"
and the alias for the second requiredField will be "key2". LoadFunc will use
requiredFiel dResponse.requiredFiel dRequestHonored to indicate whether the
pushProjection() request is honored.
L oadCaster has methods to convert byte arrays to specific types. A loader
implementation should implement thisif casts (implicit or explicit) from DataByteArray
fields to other types need to be supported.
L oadPredicatePushdown has the methods to push predicates to the loader. It is different
than L oadM etadata.setPartitionFilter in that loader may load records which does not
satisfy the predicates. In other words, predicatesis only a hint. Note thisinterfaceis still
in development and might change in next version. Currently only OrcStorage implements
thisinterface.
NonFSL oadFunc is a marker interface to indicate that a L oadFunc implementation is not
afilesystem loader. Thisis useful for LoadFunc classes that for example supply queries
instead of filesystem pathes to the LOAD operator.

The LoadFunc abstract class is the main class to extend for implementing aloader. The
methods which need to be overridden are explained below:

getlnputFormat(): This method is called by Pig to get the InputFormat used by the loader.
The methods in the InputFormat (and underlying RecordReader) are called by Pig in the
same manner (and in the same context) as by Hadoop in a MapReduce java program. If
the InputFormat is a Hadoop packaged one, the implementation should use the new API
based one under org.apache.hadoop.mapreduce. If it is a custom InputFormat, it should
be implemented using the new API in org.apache.hadoop.mapreduce.

Page 23

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadCaster.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadPredicatePushdown.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/NonFSLoadFunc.java?view=markup

User Defined Functions

If acustom loader using atext-based InputFormat or afile-based |nputFormat would
liketo read filesin all subdirectories under a given input directory recursively, then

it should use the PigTextlnputFormat and PigFilel nputFormat classes provided

in org.apache.pig.backend.hadoop.executionengine.mapReducel ayer. The Pig
InputFormat classes work around a current limitation in the Hadoop Textl nputFormat
and FilelnputFormat classes which only read one level down from the provided input
directory. For example, if theinput in the load statement is'dirl’ and there are subdirs
'dir2' and 'dir2/dir3' beneath dirl, the Hadoop TextInputFormat and Filel nputFormat
classes read the files under 'dirl' only. Using PigTextlnputFormat or PigFilel nputFormat
(or by extending them), the filesin all the directories can be read.

setLocation(): This method is called by Pig to communicate the load location to the
loader. The loader should use this method to communi cate the same information to the
underlying InputFormat. This method is called multiple times by pig - implementations
should bear thisin mind and should ensure there are no inconsistent side effects due to
the multiple calls.

prepareToRead(): Through this method the RecordReader associated with the
InputFormat provided by the LoadFunc is passed to the LoadFunc. The RecordReader
can then be used by the implementation in getNext() to return atuple representing a
record of data back to pig.

getNext(): The meaning of getNext() has not changed and is called by Pig runtime to get
the next tuple in the data - in this method the implementation should use the underlying
RecordReader and construct the tuple to return.

The following methods have default implementations in LoadFunc and should be overridden
only if needed:

setUdf ContextSignature(): This method will be called by Pig both in the front end

and back end to pass a unique signature to the Loader. The signature can be used to
store into the UDFContext any information which the Loader needs to store between
various method invocations in the front end and back end. A use case isto store
RequiredFieldList passed to it in LoadPushDown.pushProjection(RequiredFieldList) for
use in the back end before returning tuplesin getNext(). The default implementation in
LoadFunc has an empty body. This method will be called before other methods.
relativeT oAbsolutePath(): Pig runtime will call this method to alow the Loader to
convert arelative load location to an absolute |ocation. The default implementation
provided in LoadFunc handles this for FileSystem locations. If the load sourceis
something else, loader implementation may choose to override this.

getCacheFiles(): Return alist of hdfsfilesto ship to distributed cache.

getShipFiles(): Return alist of local filesto ship to distributed cache.

Example Implementation

Page 24

User Defined Functions

The loader implementation in the example is aloader for text data with line delimiter
as'\n' and '\t' as default field delimiter (which can be overridden by passing a different
field delimiter in the constructor) - thisis similar to current PigStorage loader in Pig. The
implementation uses an existing Hadoop supported Inputformat - TextlnputFormat - as the
underlying InputFormat.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 25

User Defined Functions

Copyright © 2007 The Apache Software Foundation. All rights reserved.

User Defined Functions

2.2.2 Store Functions

StoreFunc abstract class has the main methods for storing data and for most use cases it
should suffice to extend it. Thereis an optional interface which can be implemented to
achieve extended functionality:

StoreM etadata: This interface has methods to interact with metadata systems to store
schema and store statistics. Thisinterface is optional and should only be implemented if
metadata needs to stored.

StoreResources. This interface has methods to put hdfs files or local files to distributed
cache.

ErrorHandling: Thisinterface allow you to skip bad records in both loader and storer
so they will not throw exception and terminate the job. Y ou can implement your

own error handler by overriding ErrorHandler interface, or use predefined error
handler: CounterBasedErrorHandler. ErrorHandling can be turned on by setting

the property pig.error-handling.enabled to true in pig.properties. Default is false.
CounterBasedErrorHandler uses two settings - pig.error-handling.min.error.records
(the minimum number of errorsto trigger error handling) and pig.error-
handling.error.threshold (percentage of the number of records as a fraction exceeding
which error is thrown).

The methods which need to be overridden in StoreFunc are explained below:

getOutputFormat(): This method will be called by Pig to get the OutputFormat

used by the storer. The methods in the OutputFormat (and underlying RecordWriter

and OutputCommitter) will be called by pig in the same manner (and in the same
context) as by Hadoop in a map-reduce java program. If the OutputFormat is a

hadoop packaged one, the implementation should use the new API based one under
org.apache.hadoop.mapreduce. If it is a custom OutputFormat, it should be implemented
using the new API under org.apache.hadoop.mapreduce. The checkOutputSpecs()
method of the OutputFormat will be called by pig to check the output location up-front.
This method will aso be called as part of the Hadoop call sequence when the job is
launched. So implementations should ensure that this method can be called multiple
times without inconsistent side effects.

setStorelocation(): This method is called by Pig to communicate the store location to
the storer. The storer should use this method to communicate the same information to the
underlying OutputFormat. This method is called multiple times by pig - implementations
should bear in mind that this method is called multiple times and should ensure there are
no inconsistent side effects due to the multiple calls.

prepareToWrite(): Writing of the data is through the OutputFormat provided by the
StoreFunc. In prepareToWrite() the RecordWriter associated with the OutputFormat
provided by the StoreFunc is passed to the StoreFunc. The RecordWriter can then be

Page 27

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/StoreFunc.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/StoreMetadata.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/StoreResources.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/ErrorHandling.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/ErrorHandler.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/CounterBasedErrorHandler.java?view=markup

User Defined Functions

used by the implementation in putNext() to write atuple representing arecord of datain a
manner expected by the RecordWriter.

* putNext(): Thismethod is called by Pig runtime to write the next tuple of data - thisisthe
method wherein the implementation will use the underlying RecordWriter to write the
Tuple out.

The following methods have default implementations in StoreFunc and should be overridden
only if necessary:

» setStoreFuncUDFContextSignature(): This method will be called by Pig both in the front
end and back end to pass a unique signature to the Storer. The signature can be used
to store into the UDFContext any information which the Storer needs to store between
various method invocations in the front end and back end. The default implementation in
StoreFunc has an empty body. This method will be called before other methods.

» relToAbsPathForStorel ocation(): Pig runtime will call this method to allow the Storer to
convert arelative store location to an absolute location. An implementation is provided in
StoreFunc which handles this for FileSystem based locations.

» checkSchema(): A Store function should implement this function to check that a given
schema describing the data to be written is acceptable to it. The default implementation
in StoreFunc has an empty body. This method will be called before any callsto
setStorel ocation().

Example Implementation

The storer implementation in the example is astorer for text data with line delimiter

as'\n' and '\t' as default field delimiter (which can be overridden by passing a different

field delimiter in the constructor) - thisis similar to current PigStorage storer in Pig. The
implementation uses an existing Hadoop supported OutputFormat - TextOutputFormat as the
underlying OutputFormat.

public class SinpleTextStorer extends StoreFunc {
protected RecordWiter witer = null;

private byte fieldDel = "\t"';

private static final int BUFFER S| ZE = 1024;
private static final String UTF8 = "UTF-8";
public PigStorage() {

}

public PigStorage(String delimter) {
this();
if (delimter.length() == 1) {
this.fieldbDel = (byte)delimter.charAt(0);
} else if (delimter.length() > 1delimter.charAt(0) == "\\") {
switch (delimter.charAt (1)) {
case 't':
this.fieldbel = (byte)'\t';
br eak;

Page 28

User Defined Functions

Copyright © 2007 The Apache Software Foundation. All rights reserved.

User Defined Functions

Copyright © 2007 The Apache Software Foundation. All rights reserved.

User Defined Functions

Copyright © 2007 The Apache Software Foundation. All rights reserved.

User Defined Functions

2.3 Using Short Names

There are two ways to call a Java UDF using a short name. One way is specifying the
package to an import list via Java property, and the other is defining an alias of the UDF by
DEFINE statement.

2.3.1 Import Lists

Animport list allows you to specify the package to which a UDF or a group of UDFs belong,
eliminating the need to qualify the UDF on every call. An import list can be specified viathe
udf.import.list Java property on the Pig command line:

Y ou can supply multiple locations as well:

To make use of import scripts, do the following:

2.3.2 Defining Aliases

Y ou can define an alias for afunction using DEFINE statement:

The first parameter of DEFINE statement is an alias of the function. The second parameter is
the fully-qualified name of the function. After the statement, you can call the function using
the alias instead of the fually-qualified name.

Page 32

basic.html#define-udfs

User Defined Functions

2.4 Advanced Topics

2.4.1 UDF Interfaces

Java UDFs can be invoked multiple ways. The smplest UDF can just extend Eval Func,
which requires only the exec function to be implemented (see How to Write a Simple Eval
Function). Every eval UDF must implement this. Additionally, if afunction isalgebraic, it
can implement Al gebr ai ¢ interface to significantly improve query performance in the
cases when combiner can be used (see Algebraic Interface). Finally, a function that can
process tuples in an incremental fashion can also implement the Accumulator interface to
improve query memory consumption (see Accumulator Interface).

The optimizer selects the exact method by which a UDF isinvoked based on the UDF type
and the query. Note that only asingle interface is used at any given time. The optimizer tries
to find the most efficient way to execute the function. If a combiner is used and the function
implements the Algebraic interface then this interface will be used to invoke the function. If
the combiner is not invoked but the accumulator can be used and the function implements
Accumulator interface then that interface is used. If neither of the conditionsis satisfied then
the exec function is used to invoke the UDF.

2.4.2 Function Instantiation

One problem that users run into is when they make assumption about how many times a
constructor for their UDF is called. For instance, they might be creating side filesin the
store function and doing it in the constructor seems like a good idea. The problem with this
approach isthat in most cases Pig instantiates functions on the client side to, for instance,
examine the schema of the data.

Users should not make assumptions about how many times afunction is instantiated; instead,
they should make their code resilient to multiple instantiations. For instance, they could
check if the files exist before creating them.

2.4.3 Passing Configurations to UDFs

The singleton UDFContext class provides two features to UDF writers. First, on the backend,
it allows UDFsto get access to the JobConf object, by calling getJobConf. Thisisonly
available on the backend (at run time) as the JobConf has not yet been constructed on the
front end (during planning time).

Second, it allows UDFs to pass configuration information between instantiations of the UDF
on the front and backends. UDFs can store information in a configuration object when they
are constructed on the front end, or during other front end calls such as checkSchema. They
can then read that information on the backend when exec (for EvalFunc) or getNext (for

Page 33

User Defined Functions

LoadFunc) is called. Note that information will not be passed between instantiations of the
function on the backend. The communication channel only works from front end to back end.

To store information, the UDF calls getUDFProperties. This returns a Properties object
which the UDF can record the information in or read the information from. To avoid name
space conflicts UDFs are required to provide a signature when obtaining a Properties object.
This can be done in two ways. The UDF can provide its Class object (viathis.getClass()).

In this case, every instantiation of the UDF will be given the same Properties object. The
UDF can also provideits Class plus an array of Strings. The UDF can pass its constructor
arguments, or some other identifying strings. This allows each instantiation of the UDF to
have a different properties object thus avoiding name space collisions between instantiations
of the UDF.

2.4.4 Monitoring Long-Running UDFs

Sometimes one may discover that a UDF that executes very quickly in the vast majority
of cases turns out to run exceedingly slowly on occasion. This can happen, for example,

if aUDF uses complex regular expressions to parse free-form strings, or if a UDF uses
some external service to communicate with. As of version 0.8, Pig provides afacility for
monitoring the length of time a UDF is executing for every invocation, and terminating its
execution if it runstoo long. Thisfacility can be turned on using a simple Java annotation:

i mport org.apache. pi g. builtin. MonitoredUDF;

@bni t or edUDF
public class M/UDF ext ends Eval Func<I nt eger> {
/* inplenentation goes here */

}

Simply annotating your UDF in this way will cause Pig to terminate the UDF's exec()
method if it runs for more than 10 seconds, and return the default value of null. The duration
of the timeout and the default value can be specified in the annotation, if desired:

i mport org.apache. pi g. builtin. MnitoredUDF;

@bni toredUDF(timeUnit = TinmeUnit. M LLI SECONDS, duration = 100, intDefault = 10)
public class M/UDF extends Eval Func<I nt eger> {
/* inplenentation goes here */

}

intDefault, longDefault, doubleDefault, floatDefault, and stringDefault can be specified
in the annotation; the correct default will be chosen based on the return type of the UDF.
Custom defaults for tuples and bags are not supported at thistime.

If desired, custom logic can also be implemented for error handling by creating a subclass of
MonitoredUDFExecutor.ErrorCallback, and overriding its handleError and/or handleTimeout

Page 34

User Defined Functions

methods. Both of those methods are static, and are passed in the instance of the EvalFunc
that produced an exception, as well as an exception, so you may use any state you have in the
UDF to process the errors as desired. The default behavior is to increment Hadoop counters
every time an error is encountered. Once you have an implementation of the ErrorCallback
that performs your custom logic, you can provide it in the annotation:

Currently the MonitoredUDF annotation works with regular and Algebraic UDFs, but has no
effect on UDFsthat run in the Accumulator mode.

3 Writing Jython UDFs

3.1 Registering the UDF

Y ou can register a Jython script as shown here. This example uses
org.apache.pig.scripting.jython.JythonScriptEngine to interpret the Jython script. Y ou can
develop and use custom script engines to support multiple programming languages and
ways to interpret them. Currently, Pig identifies jython as a keyword and ships the required
scriptengine (jython) to interpret it.

The following syntax is also supported, where myfuncs is the namespace created for all the
functions inside test.py.

A typical test.py looks like this:

User Defined Functions

@chemaFunct i on("squar eSchema")
def squareSchenma(i nput):
return input

No decorator - bytearray
def concat (str):
return str+str

The register statement above registers the Jython functions defined in test.py in Pig's runtime
within the defined namespace (myfuncs here). They can then be referred later on in the pig
script as myfuncs.helloworld(), myfuncs.complex(), and myfuncs.square(). An example

usageis.
b = foreach a generate nyfuncs. helloworld(), nyfuncs.square(3);

3.2 Decorators and Schemas

To annotate a Jython script so that Pig can identify return types, use Jython decorators to
define output schemafor the script UDF.

* outputSchema - Defines schemafor a script UDF in aformat that Pig understands and is
able to parse.

» outputFunctionSchema - Defines a script delegate function that defines schemafor this
function depending upon the input type. Thisis needed for functions that can accept
generic types and perform generic operations on these types. A simple example is square
which can accept multiple types. SchemaFunction for thistype is a simple identity
function (same schema as input).

» schemaFunction - Defines delegate function and is not registered to Pig.

When no decorator is specified, Pig assumes the output datatype as bytearray and converts
the output generated by script function to bytearray. Thisis consistent with Pig's behavior in
case of Java UDFs.

Sample Schema String - y:{t:(word:chararray,num:long)}, variable names inside a schema
string are not used anywhere, they just make the syntax identifiable to the parser.

3.3 Example Scripts

Simple tasks like string manipulation, mathematical computations, and reorganizing

data types can be easily done using Jython scripts without having to develop long and
complex UDFsin Java. The overall overhead of using scripting language is much less and
development cost is almost negligible. The following UDFs, developed in Jython, can be
used with Pig.

my Sanpl eLi b. py

Page 36

User Defined Functions

3.4 Advanced Topics

3.4.1 Importing Modules

Y ou can import Jython modules in your Jython script. Pig resolves Jython dependencies
recursively, which means Pig will automatically ship all dependent Jython modules to the

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 37

User Defined Functions

backend. Jython modules should be found in the jython search path: JY THON_HOME,
JYTHONPATH, or current directory.

3.4.2 Combined Scripts

UDFs and Pig scripts are generally stored in separate files. For testing purposes you can
combine the code in asingle file - a"combined" script. Note, however, if you then decide to
embed this "combined" script in a host language, the language of the UDF must match the
host language.

This example combines Jython and Pig. This"combined" script can only be embedded in
Jython.

With Jythonyou MUST usetheif _ name__ == "'__main__': constructto
separate UDFs and control flow. Otherwise the script will result in an error.

4 Writing JavaScript UDFs

Note: JavaScript UDFs are an experimental feature.

4.1 Registering the UDF

Y ou can register JavaScript as shown here. This example uses
org.apache.pig.scripting.js.JsScriptEngine to interpret JavaScript. Y ou can develop and use
custom script engines to support multiple programming languages and ways to interpret
them. Currently, Pig identifies s as a keyword and ships the required scriptengine (Rhino) to
interpret it.

The following syntax is also supported, where myfuncs is the namespace created for all the
functionsinside test.js.

Page 38

User Defined Functions

The register statement above registers the js functions defined in test.jsin Pig's runtime
within the defined namespace (myfuncs here). They can then be referred later on in the pig
script as myfuncs.helloworld(), myfuncs.complex(), and myfuncs.square(). An example

usageis.

4.2 Return Types and Schemas

Since JavaScript functions are first class objects, you can annotate them by adding attributes.
Add an outputSchema attribute to your function so that Pig can identify return types for the
script UDF.

outputSchema - Defines schema for a script udf in aformat that Pig understands and is
ableto parse.

Sample Schema String - y:{t:(word:chararray,num:long)}

Variable names inside a schema string are used for type conversion between Pig and
JavaScript. Tuples are converted to Objects using the names and vice versa

4.3 Example Scripts
A simple JavaScript UDF (udf.js) is shown here.

This Pig script registers the JavaScript UDF (udf.js).

Page 39

User Defined Functions

4.4 Advanced Topics

UDFs and Pig scripts are generally stored in separate files. For testing purposes you can
combine the code in asingle file - a"combined" script. Note, however, if you then decide
to embed this "combined" script in a host language, the language of the UDF and the host
language must match.

This example combines JavaScript and Pig. This"combined" script can only be embedded in
JavaScript.

With JavaScript, the control flow MUST be defined in the main function. Otherwise the
script will result in an error.

5 Writing Ruby UDFs

Note: Ruby UDFs are an experimental feature.

5.1 Writing a Ruby UDF
Y ou must extend PigUdf and define your Ruby UDFs in the class.

5.2 Return Types and Schemas

Y ou have two ways to define the return schema:

Page 40

User Defined Functions

outputSchema - Defines the schema for a UDF in aformat that Pig understands.

Y ou need to put outputSchema/outputSchemaFunction statement right before your UDF. The
schema function itself can be defined anywhere inside the class.

5.3 Registering the UDF
Y ou can register a Ruby UDF as shown here.

Thisis ashortcut to the complete syntax:

Ther egi st er statement above registers the Ruby functions defined in test.rb in Pig’'s
runtime within the defined namespace (myfuncs in this example). They can then be referred
later oninthe Pig Latin script asnyf uncs. squar e() . An example usage is.

5.4 Example Scripts
Here are two complete Ruby UDF samples.

User Defined Functions

5.5 Advanced Topics

Y ou can also write Algebraic and Accumulator UDFs using Ruby. Y ou need to extend

your classfrom Al gebr ai cPi gudf and Accumul at or Pi gUdf respectively. For an
Algebraic UDF, definei ni ti al ,i nt er med, andf i nal methodsin the class. For an
Accumulator UDF, define exec and get methodsin the class. Below are example for each
type of UDF:

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 42

User Defined Functions

6 Writing Groovy UDFs
Note: Groovy UDFs are an experimental feature.

6.1 Registering the UDF

Y ou can register a Groovy script as shown here. This example uses
org.apache.pig.scripting.groovy.Groovy ScriptEngine to interpret the Groovy script. You
can develop and use custom script engines to support multiple programming languages and
ways to interpret them. Currently, Pig identifies groovy as a keyword and ships the required
scriptengine (groovy-all) to interpret it.

The following syntax is also supported, where myfuncs is the namespace created for all the
functions inside test.groovy.

A registered script can contain multiple UDFs. UDFs can be static or instance methods, an
instance of the enclosing class will be created as needed. Only methods for which areturn
schemais defined will be availablein Pig.

6.2 Return Types and Schemas

Y ou have two ways to define the return schema, both use annotations:

@OutputSchema annotation - Defines the schema for a UDF in aformat that Pig
understands.

Page 43

User Defined Functions

@OutputSchemaFunction annotation - Defines the name of a function which will return the
schema at runtime according to the input schema.

Only methods annotated with either @OutputSchema or @OutputSchemaFunction will be
exposed to Pig as UDFs. In the example above, squareSchemawill not be available in Pig as
aUDF.

6.3 Type Conversions

The data passed back and forth between Pig and Groovy goes through a conversion process.
The following conversions rules are applied:

Pig to Groovy

Tuple: groovy.lang.Tuple

DataBag: groovy.lang.Tuple containing the bag's size and an iterator on its content
org.jodatime.DateTime: org.jodatime.DateTime
Map: java.util.Map

int/long/float/double: asis

chararray: String

bytearray: byte[] (content is copied)

boolean: boolean

biginteger: Biglnteger

bigdecimal: BigDecimal

null: null

Anything else raises an exception

Groovy to Pig

* Object[]: Tuple

» groovy.lang.Tuple: Tuple

» org.apache.pig.data.Tuple: Tuple

org.apache.pig.data.DataBag: DataBag

Page 44

User Defined Functions

» org.jodatime.DateTime: org.joda.time.DateTime
e javautil.Map: Map

* javadtil.List: DataBag

» Byte/Short/Integer: int

* Long: long

* Float: float

» Double: double

e String: chararray

» byte[]: DataByteArray (content is copied)
» Boolean: boolean

» Biglnteger: biginteger

* BigDecimal: bigdecimal

o null: null

Anything el se raises an exception

6.4 Advanced Topics

Y ou can also write Algebraic and Accumulator UDFs using Groovy. Both types of UDFs
are declared using annotations, a single Groovy file can therefore enclose several Algebraic/
Accumulator UDFs, al mixed with regular UDFs.

Algebraic UDFs are declared using three annotations, @Algebraiclnitial,
@Algebraiclntermed and @A lgebraicFinal which are to annotate methods that correspond

to theinitial, intermed and final steps of an Algebraic UDF. Those annotations have asingle
parameter which is the name of the Algebraic UDF that will be available in Pig. The methods
annotated with @Algebraiclnitial and @Algebraiclntermed accept a Tuple as parameter

and return a Tuple. The return type of the method annotated with @AlgebraicFinal will
determine the return type of the Algebraic UDF. Here is an example of an Algebraic UDF
named 'sum'’ defined in Groovy:

i nport org.apache. pi g. scri pting.groovy. Al gebraiclnitial;
i nport org.apache. pi g. scri pting. groovy. Al gebrai cl nt er ned,;
i nport org. apache. pi g. scri pting. groovy. Al gebrai cFi nal ;

cl ass GroovyUDFs {
@Al gebrai cFinal (' sum)
public static |long al gFinal (Tuple t) {
long x = 0;
for (Qobject o: t[1]) {
X = X + 0;
}

return Xx;

}
@A\l gebraiclnitial ('sum)
public static Tuple alglnitial (Tuple t) {

Page 45

User Defined Functions

Similarly, Accumulator UDFs are declared using the three annotations

@A ccumulatorAccumulate, @A ccumulatorGetV alue and @A ccumulatorCleanup which
are to annotate methods that correspond to the methods accumulate, getVaue and cleanup
of aJava Accumulator UDF. Those annotations have a single parameter which isthe

name of the Accumulator UDF that will be available in Pig. The methods annotated with
@A ccumulatorAccumulate and @A ccumulatorCleanup return void. The methods annotated
with @A ccumulatorGetV alue and @A ccumulatorCleanup take no parameters. The method
annotated with @A ccumulatorAccumul ate takes a Tuple as parameter. The return schema of
the Accumulator UDF is determined by the @OutputSchema or @OutputSchemaFunction
annotation used on the method annotated with @A ccumulatorGetV alue. Note that even
though a method annotated with @A ccumulatorGetV alue has an @OutputSchema or
@OutputSchemaFunction annotation, it will not be available in Pig, only the Accumulator
UDF to which it belongs will.

Since Accumulator UDFs maintain state, the methods annotated with the
@A ccumulatorX XX annotations cannot be static. A single instance of the enclosing class
will be used when invoking them, thus enabling them to access a single state.

The following example defines an Accumulator UDF named 'sumacc':

Page 46

User Defined Functions

7 Writing Python UDFs

Here Python UDFs means C Python UDFs. It uses python command line to run the Python
UDFs. It is different than Jython, which relies on Jython library. Instead, it streams the data
in and out of the python process. The implementation mechanism is completely different than
Jython.

7.1 Registering the UDF

Y ou can register a Python script as shown here.

The following syntax is also supported, where myfuncs is the namespace created for all the
functions inside test.py.

A typical test.py looks like this:

The register statement above registers the Python functions defined in test.py in Pig's
runtime within the defined namespace (myfuncs here). They can then be referred later onin
the pig script as myfuncs.square(), myfuncs.concat(). An example usageiis:

User Defined Functions

b = foreach a generate nyfuncs.concat('hello', '"world'), nyfuncs.square(3);

7.2 Decorators and Schemas

To annotate a Python script so that Pig can identify return types, use Python decoratorsto
define output schema for the script UDF.

» outputSchema - Defines schema for a script UDF in aformat that Pig understands and is
ableto parse.

When no decorator is specified, Pig assumes the output datatype as bytearray and converts
the output generated by script function to bytearray. Thisis consistent with Pig's behavior in
case of Java UDFs.

Sample Schema String - words:{ (word:chararray)}, variable namesinside a schema string
are not used anywhere, they just make the syntax identifiable to the parser.

8 Piggy Bank

Piggy Bank is aplace for Pig users to share the Java UDFs they have written for use with
Pig. The functions are contributed "as-is." If you find a bug in afunction, take the time to fix
it and contribute the fix to Piggy Bank. If you don't find the UDF you need, take the time to
write and contribute the function to Piggy Bank.

Note: Piggy Bank currently supports Java UDFs. Support for Jython and JavaScript UDFs
will be added at alater date.

8.1 Accessing Functions

The Piggy Bank functions are currently distributed in source form. Users are required to
checkout the code and build the package themselves. No binary distributions or nightly
builds are available at thistime.

To build ajar file that contains all available UDFs, follow these steps:

* Checkout UDF code: svn co http://svn. apache. org/ repos/ asf/ pi g/
t runk/ contri b/ pi ggybank

* Add pig.jar to your ClassPath: export CLASSPATH=$CLASSPATH: / pat h/ t o/
pig.jar

» Buildthejar file: from directoryt r unk/ cont ri b/ pi ggybank/j avarunant . This
will generate pi ggybank. j ar inthe same directory.

Toobtainj avadoc description of the functionsrun ant j avadoc from directory
t runk/ contri b/ pi ggybank/ j ava. The documentation is generate in directory
t runk/ contri b/ pi ggybank/j ava/ bui | d/ j avadoc.

Page 48

User Defined Functions

To use afunction, you need to determine which package it belongs to. The top level packages
correspond to the function type and currently are:

» org.apache.pig.piggybank.comparison - for custom comparator used by ORDER operator

» org.apache.pig.piggybank.evaluation - for eval functions like aggregates and column
transformations

» org.apache.pig.piggybank.filtering - for functions used in FILTER operator

» org.apache.pig.piggybank.grouping - for grouping functions

* org.apache.pig.piggybank.storage - for load/store functions

(The exact package of the function can be seen in the javadocs or by navigating the source
tree.)

For example, to use the UPPER function:

REG STER / publ i c/ shar e/ pi g/ contri b/ pi ggybank/j ava/ pi ggybank. jar ;

Tweet sl naug = FI LTER Tweets BY org. apache. pi g. pi ggybank. eval uati on. stri ng. UPPER(t ext)
MATCHES ' . * (| NAUG OBAMA| Bl DEN| CHENEY| BUSH) . ** ;

STORE Tweet sl naug | NTO ' net a/i naug/ t weet s_i naug' ;

8.2 Contributing Functions

To contribute a Java function that you have written, do the following:

1. Check the existing javadoc to make sure that the function does not already exist as
described in Accessing Functions.
Checkout the UDF code as described in Accessing Functions.
Place your java code in the directory that makes sense for your function. The directory
structure currently has two levels: (1) function type, as described in Accessing Functions,
and (2) function subtype, for some of the types (like math or string for eval functions). If
you think your function requires a new subtype, feel free to add one.

4. Make sure that your function is well documented and uses the javadoc style of
documentation.

5. Make sure that your code follows Pig coding conventions described in How to Contribute
to Pig.

6. Make surethat for each function, you add a corresponding test classin the test part of the
tree.

7. Submit your patch following the process described in How to Contribute to Pig.

Page 49

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/javadoc.html
https://cwiki.apache.org/confluence/display/PIG/HowToContribute
https://cwiki.apache.org/confluence/display/PIG/HowToContribute
https://cwiki.apache.org/confluence/display/PIG/HowToContribute

	Table of contents
	1 Introduction
	2 Writing Java UDFs
	2.1 Eval Functions
	2.1.1 How to Use a Simple Eval Function
	2.1.2 How to Write a Simple Eval Function
	2.1.3 Aggregate Functions
	2.1.4 Algebraic Interface
	2.1.5 Accumulator Interface
	2.1.6 Filter Functions
	2.1.7 Implement UDF by Simulation
	2.1.8 Pig Types and Native Java Types
	2.1.9 Schemas and Java UDFs
	2.1.10 Error Handling
	2.1.11 Function Overloading
	2.1.12 Using Counters
	2.1.13 Access input schema inside EvalFunc
	2.1.14 Reporting Progress
	2.1.15 Using Distributed Cache
	2.1.16 Compile time evaluation
	2.1.17 Typecasting from bytearrays
	2.1.18 Clean up static variable in Tez

	2.2 Load/Store Functions
	2.2.1 Load Functions
	2.2.2 Store Functions

	2.3 Using Short Names
	2.3.1 Import Lists
	2.3.2 Defining Aliases

	2.4 Advanced Topics
	2.4.1 UDF Interfaces
	2.4.2 Function Instantiation
	2.4.3 Passing Configurations to UDFs
	2.4.4 Monitoring Long-Running UDFs

	3 Writing Jython UDFs
	3.1 Registering the UDF
	3.2 Decorators and Schemas
	3.3 Example Scripts
	3.4 Advanced Topics
	3.4.1 Importing Modules
	3.4.2 Combined Scripts

	4 Writing JavaScript UDFs
	4.1 Registering the UDF
	4.2 Return Types and Schemas
	4.3 Example Scripts
	4.4 Advanced Topics

	5 Writing Ruby UDFs
	5.1 Writing a Ruby UDF
	5.2 Return Types and Schemas
	5.3 Registering the UDF
	5.4 Example Scripts
	5.5 Advanced Topics

	6 Writing Groovy UDFs
	6.1 Registering the UDF
	6.2 Return Types and Schemas
	6.3 Type Conversions
	6.4 Advanced Topics

	7 Writing Python UDFs
	7.1 Registering the UDF
	7.2 Decorators and Schemas

	8 Piggy Bank
	8.1 Accessing Functions
	8.2 Contributing Functions

